
AN INFERENCE AND CHECKING FRAMEWORK FOR
CONTEXT-SENSITIVE PLUGGABLE TYPES

By

Wei Huang

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: COMPUTER SCIENCE

Approved by the
Examining Committee:

Ana Milanova, Thesis Adviser

Christopher D. Carothers, Member

Mukkai Krishnamoorthy, Member

Ondřej Lhoták, Member

Rensselaer Polytechnic Institute
Troy, New York

April 2014
(For Graduation May 2014)

c© Copyright 2014

by

Wei Huang

All Rights Reserved

ii

CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . ix

ACKNOWLEDGMENT . xiv

ABSTRACT . xv

1. Introduction . 1

1.1 Pluggable Types . 2

1.1.1 Example: Reference Immutability Types 3

1.2 Type Inference . 3

1.3 Contributions . 5

1.4 Thesis Outline . 7

2. Inference and Checking Framework . 8

2.1 Overview . 8

2.2 Unified Typing Rules . 10

2.2.1 Framework Parameters . 10

2.2.2 Typing Rules . 11

2.2.3 Method Overriding . 13

2.2.4 Ranking over Typings . 14

2.2.4.1 Valid Typing . 14

2.2.4.2 Objective Function 14

2.2.4.3 Maximal Typing . 15

2.3 Unified Type Inference . 16

2.3.1 Set-based Solution . 16

2.3.1.1 Set Mapping . 16

2.3.1.2 Solving Constraints 17

2.3.2 Properties of the Set-based Solution 18

2.4 Type Checking . 20

iii

3. Reference Immutability Types . 22

3.1 Type Qualifiers and Subtying Relation 23

3.2 Viewpoint Adaptation . 25

3.2.1 Context Sensitivity . 25

3.2.2 Viewpoint Adaptation Operation 27

3.2.3 Context of Adaptation . 27

3.3 Additional Constraints . 28

3.4 Instantiated Typing Rules . 28

3.5 Type Inference . 30

3.5.1 Initial Mapping . 30

3.5.2 Objective Function . 31

3.5.3 Maximal Typing . 31

3.6 Inference Example . 33

3.7 Method Purity Inference . 34

4. Ownership Types . 40

4.1 Type Qualifiers and Subtying Relation 42

4.2 Viewpoint Adaptation . 44

4.2.1 Viewpoint Adaptation Operation 44

4.2.2 Context of Adaptation . 45

4.2.3 Additional Constraints . 46

4.3 Instantiated Typing Rules . 46

4.4 Type Inference . 46

4.4.1 Initial Mapping . 46

4.4.2 Objective Function . 47

4.4.3 Maximal Typing . 49

4.5 Inference Example . 51

5. Universe Types . 52

5.1 Type Qualifiers and Subtyping Relation 52

5.2 Viewpoint Adaptation . 54

5.2.1 Viewpoint Adaptation Operation 55

5.2.2 Context of Adaptation . 55

5.2.3 Additional Constraints . 56

iv

5.3 Instantiated Typing Rules . 57

5.4 Type Inference . 58

5.4.1 Initial Mapping . 58

5.4.2 Objective Function . 58

5.4.3 Maximal Typing . 58

5.5 Inference Example . 60

6. Information Flow Systems . 62

6.1 SFlow/Integrity for Java Web Applications 63

6.1.1 Type Qualifiers and Subtying Relation 64

6.1.2 Viewpoint Adaptation . 65

6.1.2.1 Context Sensitivity 65

6.1.2.2 Viewpoint Adaptation Operation 66

6.1.2.3 Context of Adaptation 67

6.1.3 Composition with Reference Immutability 67

6.1.4 Instantiated Typing Rules . 69

6.1.5 Type Inference . 71

6.1.5.1 Initial Mapping . 71

6.1.5.2 Objective Function 71

6.1.5.3 Method Summary Constraints 72

6.1.6 Inference Example . 75

6.1.7 Web Application-Specific Features 76

6.1.7.1 Reflective Object Creation 77

6.1.7.2 Libraries . 78

6.1.7.3 Frameworks . 78

6.1.7.4 Mapping Data Structures 80

6.2 SFlow/Confidentiality for Android apps 81

6.2.1 Motivating Example . 82

6.2.2 Type Qualifiers and Subtyping Relation 83

6.2.3 Viewpoint Adaptation . 85

6.2.4 Additional Constraints . 85

6.2.5 Instantiated Typing Rules . 86

6.2.6 Inference Example . 88

6.2.7 Android-Specific Features . 90

6.2.7.1 Libraries . 90

6.2.7.2 Multiple Entry Points and Callbacks 91

6.2.7.3 Inter-Component Communication (ICC) 93

v

7. Empirical Results . 97

7.1 ReIm . 97

7.1.1 Experimental Setup . 99

7.1.2 Inference Result . 101

7.1.3 Correctness and Precision Evaluation 102

7.1.4 Purity Inference . 105

7.1.4.1 Comparison with JPPA 106

7.1.4.2 Comparison with JPure 108

7.2 Universe Types and Ownership Types 108

7.2.1 Experimental Setup . 108

7.2.2 Inference Result of Universe Types 109

7.2.3 Inference Result of Ownership Types 110

7.2.4 Comparing Universe Types vs. Ownership Types 112

7.3 SFlow/Integrity . 114

7.3.1 Experimental Setup . 114

7.3.2 Inference Result . 115

7.4 SFlow/Confidentiality . 120

7.4.1 DroidBench . 120

7.4.2 Google Play Store . 120

7.4.3 Malware . 123

8. Related Work . 124

8.1 Type Inference and Checking Frameworks 124

8.1.1 Polyglot . 124

8.1.2 JastAdd . 124

8.1.3 JQual . 125

8.1.4 JavaCOP . 126

8.1.5 Checker Framework . 127

8.2 Reference Immutability Systems . 127

8.2.1 Comparison with Javari . 128

8.2.2 Comparison with Javarifier . 129

8.2.3 Purity . 131

8.2.4 Other Related Work on Reference Immutability 132

8.3 Ownership Type Systems . 132

8.4 Information Flow Systems . 134

vi

8.4.1 Taint Analysis for Web Applications 134

8.4.2 Android Malware Analysis . 135

8.5 Other Related Work . 137

9. Conclusion and Future Work . 138

9.1 Inference and Checking Framework 138

9.2 Instantiations of Pluggable Type Systems 138

9.3 Future Work . 139

BIBLIOGRAPHY . 140

vii

LIST OF TABLES

4.1 Inference of Ownership Types for the example in Figure 4.1. 51

7.1 Inference results for reference immutability. #Line shows the number of
lines of the benchmarks, including blank lines and comments. Annotat-
able References include all references, including fields, local variables,
return values, formal parameters, and implicit parameters this. It does
not include variables of primitive type. #Ref is the total number of
annotatable references, #Readonly, #Polyread, and #Mutable are
the number of references inferred as readonly, polyread, and mutable,
respectively. We also include the running time for the benchmarks. The
last column Time shows the total running time in seconds, including
reference immutability inference and type-checking. 102

7.2 Pure methods in Java Olden benchmarks. 106

7.3 The benchmarks used by Ownership Types and Universe Types. 109

7.4 The inference results for Universe Types. Column #Ref gives the total
number of references excluding implicit parameters this. Column #Pure
gives the number of pure methods inferred automatically based on
reference immutability [15]. Columns #any, #rep, and #peer give the
number of references inferred as any, rep, and peer, respectively. No user
annotations are needed for the inference of Universe Types; therefore,
there are only zeros in the #Man column. Last column Time shows the
total running time in seconds including parsing the source code, type
inference, and type-checking. 109

7.5 The inference results for Ownership Types. Column #Ref again gives
the total number of references excluding the implicit parameters this.
Columns #〈rep| 〉, #〈own| 〉, #〈p| 〉, and #〈norep| 〉 give the numbers of
variables whose owners are inferred as rep, own, p, and norep, respectively.
The boldfaced number in parentheses in column #〈rep| 〉 is an upper
bound on rep typings; it is discussed in the text. #Man shows the
total number of manual annotations and, in parentheses, the number of
annotations per 1kLOC. Time shows the running time in seconds. . . . 110

7.6 Ownership Types vs. Universe Types on allocation sites. The four
columns give the number of OT/UT pairings and, in parenthesis, the
corresponding percentages. For example, column 〈rep| 〉/peer shows the
number of allocation sites that were inferred as rep in Ownership Types
and peer in Universe Types. 113

viii

7.7 Information about benchmarks and running time of SFlowInfer. The file
and line counts include Java files precompiled from JSP files. The time
is for running configuration [Parameter manipulation, SQL injection].
The time for running other configurations is practically the same. . . . 114

7.8 Inference results for [Parameter, SQL], [Parameter, XSS], [Parameter,
HTTP] and [Parameter, Path]. The multicolumns show numbers of
Type-1 (T1), Type-2 (T2), and False-positive (FP) type errors for the
four configurations; note that a large number of benchmarks have 0 type
errors, i.e., they are proven safe. 117

7.9 Inference results for [Header, SQL], [Header, XSS], [Header, HTTP] and
[Header, Path]. The multicolumns show numbers of Type-1 (T1), Type-
2 (T2), and False-positive (FP) type errors for the four configurations.
Again a large number of benchmarks have 0 type errors, i.e., they are
proven safe. Due to time constraints, we did not examine the type errors
for jspwiki; instead, we conservatively classified them as False-positive.
Therefore, the actual False-positive rate is lower than the one reported. 118

7.10 Inference results for [Cookie, SQL], [Cookie, XSS], [Cookie, HTTP] and
[Cookie, Path]. The multicolumns show numbers of Type-1 (T1), Type-2
(T2), and False-positive (FP) type errors for the four configurations.
Again, we conservatively classified all errors in jspwiki as False-positive
and the actual False-positive rate is lower than the one reported. . . . 119

7.11 Summary of comparison on DroidBench [47] with other taint analysis
tools (

√
= correct warning, × = false warning, © = missed flow). . . . 120

7.12 Actual flows in Google Play Store shown as Source→Sink pairs. The
number in parentheses is the number of type errors reported by DroidInfer
for the app. The majority of flows happen in advertising libraries such
as InMobi, Millenial Media and Flurry, that are called from the apps. . 121

7.13 Leaks detected in Malware. 123

ix

LIST OF FIGURES

2.1 Inference Framework Architecture. 9

2.2 Syntax. C and D are class names, f is a field name, m is a method name,
x, y, z are names of local variables, formal parameters, or parameter this,
and q is type qualifier, and i is the call site identifier. As in the code
examples, this is explicit. For simplicity, we assume all names are unique. 12

2.3 Unified Typing Rules. Function typeof retrieves the declared qualified
types of fields and methods; function C retrieves the context of adaptation
of statement; function B retrieves the additional constraints imposed by
a specific type system; Γ is a type environment that maps variables to
qualifiers from U . 13

3.1 Instantiated Typing Rules for ReIm. 29

3.2 Inference Example for ReIm. A.get(Y) has different mutabilities in the
contexts of setG and getG. Also, A.getF(), which is called from A.get(Y),
has different mutabilities in different calling contexts. The box beside
each statement shows the set-based solution; the underlined qualifiers
are the final qualifiers picked by ReIm. 33

3.3 A simple linked list and example usage. 35

3.4 Extended typing rules for static fields (see Figure 3.1 for the base
type system). Function methodof (s) returns the enclosing method of
statement s. Function statictypeof (m) returns the static immutability
type of m. Static immutability types can be readonly, polyread, or mutable.
Rule (TCALL) includes the antecedents from the base type system and
the new antecedents that handle the static immutability type of method
m, underlined. 36

4.1 Annotated XStack with Ownership Types. The boxed italic letters
denote object allocation sites. 43

4.2 Object graph (left) and ownership tree (right) for XStack for the example
in Figure 4.1. In the object graph we show all references between objects.
In the ownership tree we draw an arrow from the owned object to its
owner and put all objects with the same owner into a dashed box. . . . 44

4.3 Instantiated Typing Rules for Ownership Types. For readability we
include separate typing rules when the receiver is this. 47

x

4.4 Ownership trees resulting from typings Γ1 and Γ2. Edges i → m and
k → l (shown in red in the object graph) cannot be typed with owner
rep simultaneously. 48

5.1 Subtying Hierarchy of Universe Types. 53

5.2 Annotated doubly-linked list. 54

5.3 Object graph (left) and ownership tree (right) for LinkedList. 55

5.4 Instantiated Typing Rules for Universe Types. Again, we show separate
typing rules when the receiver is this. 57

5.5 Annotated XStack with Universe Types. The boxed italic letters denote
object allocation sites. 60

5.6 Inference of Universe Types for the example in Figure 5.5. 61

6.1 SQL injection example. 63

6.2 SQL injection example with SFlow/Integrity typing. 65

6.3 Context sensitivity example. 66

6.4 Instantiated Typing Rules for SFlow/Integrity. 70

6.5 An example illustrating the computation of the method summary con-
straints. The frame box beside each statement shows the corresponding
constraints the statement generates. 72

6.6 Computation of method summary constraints. C is the set of constraints,
it is initialized to the set of constraints for program statements (recall
that each equality constraint is written as two subtyping constraints).
S is initialized to the result of the set-based solver. Cases 1 and 2 add
qx <: qy into C because qyBpoly always yields qy. Case 3 adds constraints
due to transitivity; this case discovers constraints from formals to return
values. Case 4 adds constraints between actual(s) and left-hand-side(s)
at calls: if there are constraints qw <: qaB qx (flow from actual to formal)
and qa B qy <: qz (flow from return value to left-hand-side), and also
qx <: qy (flow from formal to return value, usually discovered by Case
3), Case 4 adds qw <: qz. Note that line 4 calls SolveConstraint(c):
the solver infers new constraints, which remove additional infeasible
qualifiers from S. This process repeats until S stays unchanged. 74

xi

6.7 Aliasing5 example from Stanford SecuriBench Micro. The frame box
beside each statement shows the corresponding constraints the statement
generates. The oval boxes show propagation during the set-based solution.
The constraint at 7 forces url to be tainted, and the constraint at 8 forces
b1 to be tainted. The constraint at 3 forces buf to be tainted and the
one at 4 forces b2 to be tainted or poly (i.e., the set-based solver removes
safe from b2’s set). The constraint at 9 then forces str to be tainted or
poly. There is a TYPE ERROR at writer.print(str). 75

6.8 The DataSource example due to Ben Livshits [43]. The frame box beside
each statement shows the generated constraints correspondingly. The
bold red frame boxes show the constraints generated by the algorithm in
Figure 6.6. The oval boxes show the set-based solution, where overstruck
qualifiers are eliminated by the the algorithm in Figure 6.6. The bold
qualifiers are the final maximal typing. It type-checks. 77

6.9 Imprecision caused by mapping data structures. 80

6.10 WallpapersMain leaks the phone identifier (the source at line 16) to a
content server (the sink at line 20) in a URL. 83

6.11 Instantiated Typing Rules for SFlow/Confidentiality. 86

6.12 id example. 87

6.13 FieldSensitivity2 example refactored from DroidBench. The frame box
beside each statement shows the corresponding constraints the statement
generates. We omitted uninteresting constraints. The oval boxes show
propagation during the set-based solution. 89

6.14 LocationLeak2 refactored from DroidBench, highlights our inference’s
novel handling of callback methods. 92

6.15 SMS message stealing in Fakedaum. The SMS message is intercepted in
SmsReceiver and passed to TaskService via Intent. Finally, the message
is sent out to the Internet using HTTP post method, resulting in a
message leak. 95

7.1 Architecture of the implementation of the inference framework. 98

7.2 The elements() method in JOlden/BH 100

7.3 Runtime performance comparison. Note that the running time for
type-checking is excluded for both ReImInfer and Javarifier. 103

7.4 Write access to enclosing context results in flatter structure for UT as
compared to OT. The bold edge from j to k highlights the write access. 112

xii

7.5 Readonly sharing of internal representation results in flatter structure
for OT as compared to UT. The dotted edge from i to e highlights the
readonly access. 113

7.6 A PhoneNumber→HttpEntity flow detected by DroidInfer in the textFree
app. 99K denotes a flow from the left side to the right side. [f denotes a
write into field f and]f denotes a read from field f. The PhoneNumber is
encoded in r8, which is written under key 137 in HashMap mPduHeaders,
a field of r2. r2 is passed to the constructor of r9, where the mPduHeaders
field is retrieved and assigned to field mPduHeader of r9. Later, the value
of 137 is retrieved, appended to field mMessage of r9, which eventually
is read, converted to a byte array, and sent to the HttpEntity sink.
Flows r2 99K r9 and r9 99K r11 have corresponding method summary
constraints r2 <: r9 and r9 <: r11; the flows are explained in the red
ovals. 122

xiii

ACKNOWLEDGMENT

I would like express the deepest appreciation to my advisor Professor Ana Milanova,

who has been continuously supporting and helping me of my PhD research. She

motivates me by her great ideas and enthusiasm in research, teaches me how to present

talks and write papers, and always trusts in me in any circumstances. Without her

guidance and persistent help, this thesis would not have been possible.

I also want to thank my thesis committee members for their insightful comments

and inspirations.

A special thank to my parents for their endless love and support throughout

my life, and to my dearest wife Xihong for her understanding, patience, and encour-

agement. Finally, I want to thank everyone who has helped and inspired me during

my doctoral study.

xiv

ABSTRACT

Pluggable types enforce many important program properties. Programmers can

use different pluggable type systems to prevent unforeseen runtime errors, facilitate

parallelism, program understanding, model checking, and more. With the addition of

JSR 308 to Java 8 released in March 2014, pluggable types become part of standard

Java.

This thesis presents a framework for specifying, inferring and checking of context-

sensitive pluggable types. By supplying a few framework parameters programmers can

instantiate the framework’s unified typing rules into concrete rules for a specific type

system. The framework then takes as input an unannotated or a partially annotated

program, infers the most desirable typing (according to the input parameters), and

verifies the correctness of the typing. Programmers can use the framework to infer

and plug existing type systems, as well as build new type systems.

This thesis presents several instantiations of interesting pluggable type systems:

(1) a context-sensitive type system ReIm for reference immutability and an efficient

quadratic type inference analysis, (2) the first effective type inference analysis for the

classical Ownership Types, (3) a novel quadratic type inference analysis for Universe

Types, (4) a context-sensitive type system SFlow/Integrity for detecting information

flow vulnerabilities in Java web applications and a novel, worst-case cubic inference

analysis, and (5) the dual type system SFlow/Confidentiality for detecting privacy

leaks in Android apps and the corresponding inference analysis; the analysis scales

well and detects leaks in apps from the Google Play Store and in known malware.

xv

CHAPTER 1

Introduction

Statically typed programming languages like Java and C# incorporate a built-in type

system. The system is mandatory because every legal program must be type-checked

according to the typing rules [1]. Compared to dynamically typed languages such

as Perl, Python, Javascript and more, the mandatory typing helps statically typed

languages in:

• Providing better documentation in the form of type signatures which can be

understood by the compiler;

• Detecting errors during compilation time, e.g. preventing adding an integer to

a boolean;

• Giving clearer interface design; and

• Improving performance as many optimizations can be done with type informa-

tion, e.g. replacing virtual calls by direct calls.

However, there are also disadvantages of the mandatory typing. First, the

mandatory typing restricts the expressiveness of statically typed languages. For

example, building a prototype with changing requirements using a statically typed

language is not as easy using a dynamically typed one, because the types of interfaces

of each component may have to be updated as the requirements change.

More importantly, mandatory typing does not always guarantee that “well-

typed” programs will not go wrong, because most built-in mandatory type systems

do not enforce some important program properties for the languages. For example,

programmers have to be very careful not to dereference a null reference, otherwise a

RuntimeException will be thrown in Java although the compiler has determined that

the program is “well-typed”.

1

2

1.1 Pluggable Types

As JSR 308 (Type Annotations Specification) [2] is becoming part of Java 8,

pluggable types are becoming more and more important. In contrast to mandatory

types, pluggable types are optional to programming languages, but they can enforce

many different properties. Programmers can use different pluggable type systems

to prevent unforeseen runtime errors as well as facilitate parallelism, program un-

derstanding, model checking, and more. For example, the Nullness pluggable type

system can detect null pointer dereferences, or verify the absence of null pointer

dereferences. The Reference immutability pluggable type system can detect unwanted

object mutation, or verify the absence of unwanted mutation. With the release

of Java 8 in March 2014, programmers can use the standard Java SDK to “plug”

informative type annotations and reasoning about their programs.

Pluggable type systems have no effect on the runtime semantics of programming

languages [1], which means the existing program would still behave identically at

runtime after adding a new pluggable type system. The same code still compiles

with any Java compiler and it runs on any JVM. Therefore, different pluggable type

systems can be applied on the same program without affecting each other.

In addition, pluggable types can help language evolution [1]. Language designers

can first introduce some simple features and gradually add more powerful features by

using pluggable types. Because pluggable types do not affect each other, this would

guarantee that features introduced by different types do not conflict. What’s more,

pluggable types make possible unifying dynamic typing and static typing in the same

language. For example, Wrigstad et al. present an approach for integrating untyped

code and typed code in the same system, then an initial prototype can smoothly

evolve into an efficient and robust program [3]. They design a scripting language

Thorn which is based on the type system like types.

Examples of pluggable type systems include: nonnull references, which can

detect null pointer dereference errors [4], reference immutability, which prevents

unwanted object mutations [5, 6], object ownership, which enforces object encap-

sulations and helps modular reasoning about programs [7, 8], AJ, which provides

data-centric synchronization for Java programs [9, 10], EnerJ, which helps improve en-

3

ergy efficiency in scientific computations [11], confined types, which prevents internal

objects from escaping their protection domain and thus enables writing secure Java

programs [12], scoped types, which statically enforces programming discipline that

eschews complexity and run-time exceptions in favor of simplicity and safety [13], in-

terning types for preventing the comparison between interned value and non-interned

value [14], and more.

1.1.1 Example: Reference Immutability Types

In this section, we briefly discuss one pluggable type system: reference im-

mutability. An immutable, also called readonly reference, cannot be used to modify

the state of the object it references, including the transitively reachable state. Con-

sider the following code snippet:

1 Matrix transpose(readonly Matrix matrix) {
2 matrix.rowSize = 100; // Compile-time error!

3 ...
4 }

where the transpose method is not supposed to mutate matrix. By declaring the

parameter matrix as readonly, the reference immutability types prevent the unwanted

mutation at line 2.

There are several type systems for reference immutability. In this thesis, we

develop ReIm [15], a context-sensitive type system for reference immutability. There

are three source-level type qualifiers in ReIm: mutable, readonly, and polyread. A

mutable reference can be used to mutate the referenced object, while a readonly

reference cannot. And polyread encodes context-sensitivity, which we will discuss in

detail in Chapter 3.

1.2 Type Inference

Just as with a traditional type system, a pluggable type system requires

annotations in the source code, and most pluggable type systems require a sizable

amount of annotations. The annotation burden on programmers may inhibit practical

adoption. Programmers would have to manually annotate all variables, while in

most cases they would want to annotate only a few variables they care about. In

4

the above transpose example, programmers would annotate the parameter matrix

as readonly, because they would want to ensure that there is no mutation through

matrix, but they would like to avoid annotating the rest of the local variables, fields

and return types.

Therefore, it is important to develop type inference techniques in order to

further advance pluggable types. Type inference transforms unannotated or partially-

annotated programs into fully-annotated ones. Programmers can annotate a few

variables they care about and have the inference infer the rest. Given the release

of Java 8, more programmers will be “plugging” informative type annotations to

improve code quality, and type inference will be increasingly important.

• First, type inference reduces the annotation burden on programmers and

therefore helps the adoption of pluggable types in practice.

• Second, it reveals valuable information about how existing programs use the

concepts expressed in the type system.

• Last but not least, it enables easy prototyping of novel type systems. Type

system designers can quickly see how their new type system works on existing

programs with the help of type inference.

However, type inference is difficult. Most existing type inference algorithms are

domain-specific. For example, Quinonez et al. use guarded constraints for inferring

Reference Immutability [16] and Dietl et al. encode Universe Types’ constraints as a

boolean satisfiability problem, which is solved by a Max-SAT solver [17]. There are

no algorithms for Ownership Types [7], AJ [9], EnerJ [11] and many other useful

type systems (to the best of our knowledge). The above mentioned techniques are

usually efficient and precise. However, it is not easy to apply these techniques to

other new type systems because they are built to target these specific type systems.

In addition, most pluggable type systems permit many different typings for

a given program. For example in reference immutability types, leaving every type

as mutable is a legal typing, but a useless one that expresses no design intent and

detects no coding errors. The fact that multiple valid typings are allowed, is one

major source of difficulty in inferring types automatically.

5

In this thesis, we propose an unified framework with which a large class of

pluggable type systems can be specified, inferred, and checked. Programmers supply

a few parameters (to be explained in Chapter 2), which instantiate the framework’s

typing rules into concrete typing rules for a specific system. The framework then

takes an unannotated or a partially annotated program and fills in the remaining

types. Programmers can use the framework to specify an existing type system and

detect/prevent errors in their programs. We have instantiated Ownership Types [7],

Universe Types [8], AJ Types [9], and more. Meanwhile, type system designers can

use the framework to define type qualifiers and typing rules, and use type inference to

quickly evaluate the new type system. We have built several new useful type systems,

including ReIm (see Chapter 3), SFlow/Integrity and SFlow/Confidentiality (see

Chapter 6), which enable effective information flow analysis for Java Web applications

and Android.

Our inference and checking framework has achieved results ranging from mostly

theoretical to keenly practical. The instantiation for Ownership Types is the first

effective inference analysis for Ownership Types [7] (ownership type inference, a

longstanding problem in the ownership community, was the problem we had set

to solve originally). The instantiation for ReIm achieves better scalability and

equal precision compared to the state-of-the-art reference immutability inference

tool, Javarifier [16]. The instantiation for SFlow/Confidentiality is an effective taint

analysis, which uncovers privacy leaks in Android apps from the Google Play Store.

1.3 Contributions

The work in this thesis makes the following contributions.

• A unified inference and checking framework for context-sensitive pluggable type

systems. By giving five framework parameters, programmers can instantiate

the framework’s unified typing rules into concrete rules for a specific type

system. The framework then infers the most desirable typing and verifies the

correctness of the typing for an unannotated or partially annotated program.

We have instantiated the framework with several type systems from the lit-

erature, including the classical Ownership Types [7], Universe Types [8] and

6

AJ [9], as well as with several novel type systems, ReIm, SFlow/Integrity and

SFlow/Confidentiality.

• A context-sensitive type system ReIm for reference immutability and an efficient

type inference analysis with O(n2) time complexity. In addition, we present

a novel application of ReIm, method purity inference. The implementation

is evaluated on programs of up to 348kLOC, including widely used Java

applications and libraries, comprising 766kLOC in total.

• The first effective type inference analysis for the classical Ownership Types.

The type inference is able to type large programs with low annotation burden

— on average, 6 annotations per 1kLOC. As far as we know, this is the first

type inference that can scale to programs of up to 110kLOC.

• A novel type inference analysis for Universe Types. The analysis has O(n2)

time complexity and requires no manual annotations. The type inference is

able to produce the “best typing”. In addition, we present a comparison of the

two different encapsulation disciplines in ownership types, owner-as-dominator

and owner-as-modifier, by comparing the classical Ownership Types, which

enforces the owner-as-dominator discipline, to Universe Types, which enforces

the owner-as-modifier discipline.

• A context-sensitive integrity type system SFlow/Integrity for detecting infor-

mation flow vulnerabilities in Java web applications and a novel, worst-case

cubic inference analysis. We present techniques for effective handling of reflec-

tive object creation, libraries and frameworks, which are ubiquitous in Java

web applications. The empirical evaluation on Java web applications of up to

126kLOC shows the inference analysis is both scalable and precise.

• The dual confidentiality type system SFlow/Confidentiality for preventing

privacy leaks in Android apps. It handles effectively the Android-specific

features, including “open” programs with multiple entry points, callbacks, large

libraries, and inter-component communication. The analysis is evaluated on

different sets of Android apps, including micro benchmarks, apps from the

7

Google Play Store, and known malware. It scales well and reveals numerous

leaks. The analysis is one of the first effective tools for Android.

1.4 Thesis Outline

The rest of the thesis is organized follows. Chapter 2 presents the unified

inference framework, including the unified typing rules and unified type inference.

Then we present several instantiations of the inference framework. Chapter 3

discusses the reference immutability type system ReIm. Chapter 4 and Chapter 5

presents the instantiations for the classical Ownership Types and for Universe Types,

respectively. Chapter 6 instantiates the inference framework into information flow

systems, presenting two novel applications using type inference: detecting security

violations in Java web applications and detecting privacy leaks in Android apps.

Chapter 8 discusses the related work and Chapter 9 concludes the thesis and discusses

the future work.

CHAPTER 2

Inference and Checking Framework

In this chapter, we present an unified inference framework for context-sensitive

pluggable type systems. We observe that a large number of context-sensitive pluggable

type systems share some common properties, e.g. they enforce subtyping constraints

on explicit or implicit assignments, account for context-sensitivity on field accesses

and method calls, and so forth. Therefore, such type systems can be specified,

inferred, and checked within an unified framework. By supplying a few parameters

(to be explained shortly), programmers can instantiate the framework’s unified typing

rules into concrete ones for a specific type system. The framework then takes as

input an unannotated or a partially annotated program, infers the most desirable

typing (according to the input parameters), and verifies the correctness of the typing.

As a result, programmers can use the framework to infer and plug existing type

systems, as well as build new type systems. In addition, they can quickly (1) see

how the concepts expressed in their systems appear in existing programs, and (2)

assess the annotation burden of their systems (if any).

The inference framework is an extension of the Checker Framework [18, 14],

on which programmers can build and test their type systems. Hence, corresponding

type checkers can be built in the Checker Framework to verify the inference results.

In the following sections of this chapter, we present the unified inference frame-

work, including the architecture (Section 2.1), the unified typing rules (Section 2.2),

the unified type inference (Section 2.3), and the type-checking (Section 2.4).

2.1 Overview

The architecture of the inference framework is shown in Figure 2.1. It consists

of four steps shown in dark grey boxes in the figure. The first step is the unified typing

rules, which can be instantiated to concrete typing rules by giving five parameters:

Portions of this chapter previously appeared as: W. Huang et al., “Inference and checking of
object ownership,” in Proc. European Conf. Object-Oriented Programming, Beijing, China, 2012,
pp. 181–206.

8

9

Unified	 Typing	 Rules	

Set-‐Based	 Solver	

Extract	 Concrete	 Typing	

Type	 Checking	

U Type qualifiers
<: Subtyping hierarchy
 Viewpoint adaptation operation
C Contex of adaptation
B Additional constraints

Parameters	

InstanAated	 Rules	

Set-‐based	 SoluAon	

Concrete	 Typing	

InstanAated	 to:	
ü  Immutability	 (ReIm)	
ü  Universe	 Types	 (UT)	
ü  Ownership	 Types	 (OT)	
ü  SFlow/Integrity	 	
ü  SFlow/ConfidenAality	 	
ü  More?	

Program	
Source	

Annotated	
Libraries	

Figure 2.1: Inference Framework Architecture.

the type qualifiers, the subtyping relation, the viewpoint operation, the context of

viewpoint adaptation, and the additional constraints enforced by a specific type

system. The second step is the set-based solver, which takes as input the instantiated

typing rules, the program source, and the annotated libraries if necessary, then

outputs the set-based solution or type errors indicating no valid typing exists. The

set-based solution maps variables to the sets of possible type qualifiers and it contains

all valid typings. The third step is to extract a concrete typing from the set-based

solution. The last step verifies the correctness of the extracted concrete typing

according to the instantiated typing rules.

10

2.2 Unified Typing Rules

In this section, we first describe the five framework parameters, then we explain

the unified typing rules.

2.2.1 Framework Parameters

There are five framework parameters for instantiating the unified typing rules:

(1) type qualifiers, (2) subtyping relation, (3) viewpoint adaptation rules, (4) context

of adaptation, and (5) additional constraints.

Type qualifiers U is the universal set of qualifiers for a specific type system. For ex-

ample in ReIm [15] (discussed in detail in Chapter 3), U = {readonly, polyread,mutable}.

Subtying relation <: defines the subtying relation between type qualifiers. For

example, the subtying relation in ReIm is

mutable <: polyread <: readonly

which means we can assign a mutable or polyread reference to a readonly one, but we

cannot assign an readonly reference to a polyread or mutable one. Notice that <: is

reflexive and transitive. Therefore, a qualifier is always a subtype of itself (q <: q).

Viewpoint adaptation B is a concept from Universe Types [8, 19, 20], which

can be adapted to Ownership Types [7] and ownership-like type systems such as

AJ [9]. Viewpoint adaptation of a type q′ from the point of view of another type q,

results in the adapted type q′′. This is written as q B q′ = q′′. Traditional viewpoint

adaptation from Universe Types defines one viewpoint adaptation operation B; it

uses B to adapt fields, formal parameters, and method returns from the point of

view of the receiver at the field access or method call. From now on, we refer to q in

q B q′ as the context of adaptation, or simply as the context.

The inference framework uses viewpoint adaptation to encode context sensitivity.

For example, the type of x.f is not just the declared type of field f — it is the type of f

adapted from the point of view of x. As a concrete example, in ReIm, if the declared

11

type of f is polyread, which denotes the mutability of f depends on the enclosing

context, then the ReIm type of x.f is not necessarily polyread, but is readonly when x

is readonly and mutable when x is mutable.

Context of adaptation C is the point of view of the adaptation, i.e. it is q in

q B q′. Traditional viewpoint adaptation as defined in [8, 20] always takes the receiver

as the viewpoint at field access or method call.

We generalize traditional viewpoint adaptation. Specifically, we allow for

adaptation from different contexts, not only from the viewpoint of the receiver.

Viewpoint adaptation encodes context sensitivity directly in the typing rules. Varying

the viewpoint adaptation operation and/or the choice of viewpoint context at method

calls, allows for encoding different kinds of context sensitivity (i.e., different kinds of

approximation).

The context of adaptation is defined as a function C of statement s. C(s) returns

the type of the context of adaptation for statement s. For example, in ReIm, the

function for field access C(x = y.f) returns the type of y, which is the receiver of the

field access. And the function for method call C(x = y.m(z)) returns the type of x,

which is the left-hand-side of the call assignment.

Additional Constraints B are used to enforce additional constraints by a specific

type system beyond the standard subtying constraints. It is defined as a function

B of statement s. For example, ReIm requires that the receiver must be mutable

when there is a field write. This can be expressed using the additional constraints as

B(y.f = x), which returns the singleton set of constraints {y = mutable} (for brevity,

for the rest of the paper, we typically use only the variable, e.g., y, instead of the

more verbose qy).

2.2.2 Typing Rules

For brevity, we restrict our formal attention to a core calculus in the style of

Vaziri et al. [9] whose syntax appears in Figure 2.2. The language models Java with

a syntax in a “named form”, where the results of field accesses, method calls, and

instantiations are immediately stored in a variable. Without loss of generality, we

12

cd ::= class C extends D {fd md} class
fd ::= t f field
md ::= t m(t this, t x) { t y s; return y } method
s ::= s; s | x = new t() | x = y statement
| x = y.f | y.f = x | x = y.mi(z)

t ::= q C qualified type

Figure 2.2: Syntax. C and D are class names, f is a field name, m is a
method name, x, y, z are names of local variables, formal parameters, or
parameter this, and q is type qualifier, and i is the call site identifier. As
in the code examples, this is explicit. For simplicity, we assume all names
are unique.

assume that methods have parameter this, and exactly one other formal parameter.

Features not strictly necessary are omitted from the formalism, but they are handled

correctly in the implementation. We write t y for a sequence of local variable

declarations.

In contrast to a formalization of standard Java, a type t has two orthogonal

components: type qualifier q and Java class type C. The type system is orthogonal

to (i.e., independent of) the Java type system, which allows us to specify typing

rules over type qualifiers q alone.

Figure 2.3 shows the unified typing rules over the syntax defined in Figure 2.2.

Rule (TNEW) ensures that the instantiated type q is a subtype of the type qx of

the left-hand side. It also enforces the additional constraints B(x = new q C).

Similarly, rule (tassign) ensures the subtyping relation in assignments. Rule (twrite)

first invokes C(y.f = x) to get the context of adaptation qc, then makes sure that the

type qx of the right-hand-side is a subtype of the adapted type of the field f, namely

qc B qf . Auxiliary function typeof(f) retrieves the type of field f from its declaration.

Similarly, rule (tread) ensures that the adapted field type is a subtype of the type

of the left-hand-side. Rule (tcall) uses typeof(m) to retrieve the type of method m,

namely qthis, qp → qret, where qthis the type of the implicit parameter this, qp is the

parameter type and qret is the return type. Then it creates the subtyping constraint

between the type of the receiver and the adapted type of this, between the type of

the actual argument z and the adapted type of the formal parameter p, and between

the adapted return type and the type of the left-hand-side x of the call assignment.

13

(tnew)

Γ(x) = qx q <: qx
B(x = new q C)

Γ ` x = new q C

(tassign)

Γ(x) = qx Γ(y) = qy qy <: qx
B(x = y)

Γ ` x = y

(twrite)

Γ(x) = qx typeof (f) = qf Γ(y) = qy
qc = C(y.f = x) qx <: qc B qf

B(y.f = x)

Γ ` y.f = x

(tread)

Γ(x) = qx Γ(y) = qy typeof (f) = qf
qc = C(x = y.f) qc B qf <: qx

B(x = y.f)

Γ ` x = y.f

(tcall)

typeof (m) = qthis, qp → qret Γ(x) = qx Γ(y) = qy Γ(z) = qz
qc = C(x = y.m(z)) qy <: qc B qthis qz <: qc B qp qc B qret <: qx

B(x = y.mi(z))

Γ ` x = y.mi(z)

Figure 2.3: Unified Typing Rules. Function typeof retrieves the declared
qualified types of fields and methods; function C retrieves the context of
adaptation of statement; function B retrieves the additional constraints
imposed by a specific type system; Γ is a type environment that maps
variables to qualifiers from U .

The unified typing rules are parameterized in that they can be instantiated

into concrete typing rules by giving five framework parameters: type qualifiers U ,

subtyping relation <:, viewpoint adaptation rules B, context of adaptation C, and

additional constraints B.

2.2.3 Method Overriding

Method overriding is handled by the standard constraints for function subtyping.

If m′ overrides m we require

typeof (m′) <: typeof (m)

14

and thus,

(qthism′ , qpm′ → qretm′) <: (qthism , qpm → qretm)

This entails qthism <: qthism′ , qpm <: qpm′ , and qretm′ <: qretm .

2.2.4 Ranking over Typings

Most pluggable type systems allow many different typings for a given program.

For example, ReIm allows many different typings. The trivial typings that apply to

every program (in ReIm the trivial typing types all variables mutable) do not express

programmers’ intent nor detect/prevent coding errors. Our goal is to pick up the

most desirable, or best, typing among all permitted typings. This section formalizes

the notion of the best typing using a ranking over all typings.

2.2.4.1 Valid Typing

We begin by defining the notion of a valid typing. Let P be a program and

F be a pluggable type system with universal set of qualifiers UF . A typing ΓP,F

is a mapping from variables in P to the type qualifiers in UF . A typing ΓP,F is a

valid typing for P in F when it renders P well-typed in F . Note that a valid typing

ΓP,F must maintain programmer-provided qualifiers in P , that is, if a variable x is

annotated by the programmer with q, then for every valid typing ΓP,F , we have

ΓP,F (x) = q.

2.2.4.2 Objective Function

We proceed to define an objective function o that can be used to rank valid

typings. The objective function o takes a valid typing Γ and returns a tuple of

numbers1. The tuples are ordered lexicographically.

To create the tuple, the objective function o assumes that the qualifiers are

partitioned and the partitions are ordered. Then, each element of the tuple is the

number of variables in Γ whose type is in the corresponding partition. For example

1Strictly, o and Γ are defined in terms of a specific type system F and program P ; for brevity,
we omit the subscripts when they are clear from context.

15

in ReIm, the function is instantiated as

oReIm(Γ) = (|Γ−1(readonly)|, |Γ−1(polyread)|, |Γ−1(mutable)|)

The partitioning and ordering is

{readonly} > {polyread} > {mutable}

Each qualifier falls in its own partition. This means, informally, that we prefer

readonly over polyread and mutable, and polyread over mutable. More formally, the

partitioning and ordering gives rise to a preference ranking OReIm over all qualifiers:

OReIm : readonly > polyread > mutable

Note that this preference ranking is not related to subtyping. Given two typings Γ1

and Γ2, we have Γ1 > Γ2 iff Γ1 has a larger number of variables typed readonly than

Γ2, or Γ1 and Γ2 have the same number of readonly variables, but Γ1 has a larger

number of polyread variables than Γ2. Function oReIm gives a natural ranking over

the set of valid typings for ReIm. In fact, the maximal (i.e., best) typing according

to the above ranking, maximizes the number of variables typed readonly.

The objective function can be instantiated to many other type systems, as we

will explain in detail in the following chapters.

2.2.4.3 Maximal Typing

A maximal typing is a typing that maximizes o (i.e., the best typing(s) according

to the heuristics encoded in o).

Definition 1. Maximal Typing. Given an objective function o over the set of valid

typings, a valid typing Γ is a maximal typing of P in F under o, if for every valid

typing Γ′, we have Γ′ 6= Γ⇒ Γ ≥ Γ′.

Perhaps somewhat unexpectedly, for ReIm, as well as other interesting systems

such as Universe Types [8] and AJ [9], there exists a unique maximal typing. For other

type systems such as Ownership Types [7], however, in general, there are multiple

16

maximal typings, i.e., there are multiple typings that maximize the objective function.

This is discussed in detail in the following chapters.

2.3 Unified Type Inference

The unified inference works on completely unannotated programs, as well as on

partially-annotated programs. We believe that neither fully automatic inference nor

fully manually annotated programs are feasible choices. In many interesting systems,

fully automatic inference is impossible; that is, the programmer must provide initial

annotations which typically reflect semantics that is impossible to infer. We envision

a cooperative system that fills in as many annotations as possible and queries the

programmer for a small set of annotations on certain variables to resolve ambiguities.

The system seamlessly integrates programmer-provided annotations with inferred

annotations.

The key idea in our system is to compute a set-based solution S instead of

a single typing by using a set-based solver. S maps variables to sets of qualifiers:

for every statement s, for every variable v in s, and for every qualifier q ∈ S(v),

there are qualifiers in the sets of the remaining variables in s, such that q and those

qualifiers make statement s type-check.

2.3.1 Set-based Solution

2.3.1.1 Set Mapping

S maps each program variable (annotatable reference) to a set of possible

type qualifiers. The variables in the mapping can be (1) local variables, (2)

parameters (including this), (3) fields, and (4) method returns. For instance,

S(x) = {readonly, polyread} means the type of reference x can be either readonly or

polyread, but not mutable in ReIm.

The initial mapping, S0, is defined as follows. Programmer-annotated variables

are initialized to the singleton set which contains only the programmer-provided

annotation. Variables that are not annotated are initialized to the maximal set of

qualifiers U .

17

2.3.1.2 Solving Constraints

The inference then creates constraints for all program statements according to

the instantiated typing rules in Figure 2.3. Subsequently, the inference iterates over

these constraints, and runs SolveConstraint(c) for each constraint c. Solve-

Constraint(c) takes as input a mapping S and outputs an updated mapping

S ′. Informally, SolveConstraint(c) removes infeasible qualifiers from the set of

variables that participate in c. Infeasible qualifiers are those make the constraint

unsatisfiable. SolveConstraint(c) refines the set of each variable that participates

in c as follows. Let x, y, z be the variables in c. For each variable, SolveCon-

straint(c) removes all infeasible qualifiers from the variable’s set. Consider variable

x. SolveConstraint(c) removes each qx from S(x), if there does not exist a pair

qy ∈ S(y), qz ∈ S(z) such that qx, qy, qz satisfy c. The same repeats for y, and then z.

Note that the order in which references are examined does not affect the final result

— one can see that SolveConstraint(c) always removes the same set of qualifiers

from S(x), regardless of whether x is examined first, second or last.

More formally, SolveConstraint(c) is defined as follows:

foreach vi ∈ c

S ′(vi) = { qi | qi ∈ S(vi) and

∃q1 ∈ S(v1), . . . , qi−1 ∈ S(vi−1), qi+1 ∈ S(vi+1), . . . , qk ∈ S(vk)

s.t. q1, . . . , qk satisfy the subtying, viewpoint adaptation, and B in c }

After applying SolveConstraint(c), for each variable vi ∈ c and each qi ∈ S ′(vi),

there exist q1 ∈ S ′(v1), ..., qi−1 ∈ S ′(vi−1), qi+1 ∈ S ′(vi+1), ..., qk ∈ S ′(vk), such that

q1, ..., qk satisfy the constraint c.

For example, consider statement x = y for ReIm. The inference generates

the corresponding constraint c : y <: x. Suppose that S(x) = {mutable} and

S(y) = {readonly, polyread,mutable} before SolveConstraint(c). The function

removes readonly and polyread from S(y) because there does not exist qx ∈ S(x) that

satisfies readonly <: qx or polyread <: qx. After the application of the function, S ′

is as follows: S ′(x) = {mutable} and S ′(y) = {mutable}. Here, readonly and polyread

are infeasible qualifiers. In the case that the infeasible qualifier is the last element

18

in S(x), the inference keeps this qualifier in S(x) and reports a type error at c. For

example, if S(x) = {mutable} and S(y) = {readonly}, then the solver reports a type

error on constraint y <: x because it is not satisfiable. We keep the qualifier in order

to produce better error reports: a type error y{readonly} <: x{mutable} is more

informative than y{readonly} <: x{}.
The inference is a fixpoint analysis. It keeps removing infeasible qualifiers for

each constraint until S reaches the fixpoint, i.e. S remains unchanged from the

previous iteration. There are two outcomes: (1) No type errors in which case the

inference outputs a set-based solution, or (2) There are type errors indicating that

there are unsatisfiable constraints, which means the program is untypable given the

initial programmer-provided annotations.

The computation fits the requirements of a monotone framework [21]. The

property space is the standard lattice of subsets, with the set of qualifiers UF being

the bottom 0, and the empty set ∅ being the top 1 of the lattice. The transfer

functions are monotone. Therefore, the set-based solution S produced by fixpoint

iteration is the unique least solution (for historical reasons sometimes this solution is

referred to as the “maximal fixpoint solution” [21]).

The fixpoint will be reached in O(n2) time where n is the size of the program.

In each iteration, at least one of the O(n) variables is updated to point to a smaller

set. Hence, there are at most O(|UF |n) iterations where |UF | is the number of

elements in the qualifier set UF which is a small constant, resulting in the O(n2)

time complexity.

2.3.2 Properties of the Set-based Solution

Let us now consider the properties of the set-based solution S. These properties

help establish that for certain type systems one can derive a maximal (i.e., best)

typing from the set-based solution S.

The first proposition states that if the algorithm removes a qualifier q from the

set S(v) for variable v, then there does not exist a valid typing that maps v to q.

The notation Γ ∈ S0 denotes that for every variable v we have Γ(v) ∈ S0(v).

Proposition 1. Let S be the set-based solution. Let v be any variable in P and let

19

q be any qualifier in F . If q /∈ S(v) then there does not exist a valid typing Γ ∈ S0,

such that Γ(v) = q.

Proof. (Sketch) We say that q is a valid qualifier for v if there exists a valid typing

Γ, where Γ(v) = q. Let v be the first variable that has a valid qualifier q removed

from its set S(v) and let SolveConstraint(c) be the function that performs the

removal. Since q is a valid qualifier there exist valid qualifiers q1, ..., qk that make

c satisfied. If q1 ∈ S(v1) and q2 ∈ S(v2), . . . , and qk ∈ S(vk), then by definition,

SolveConstraint(c) would not have had q removed from S(v). Thus, one of

v1, . . . , vk must have had a valid qualifier removed from its set before the application

of SolveConstraint(c). This contradicts the assumption that v is the first variable

that has a valid qualifier removed.

The second proposition states that if we map every variable v to the maximal

qualifier in its set S(v) according to its preference ranking over qualifiers, and the

typing is valid, then this typing maximizes the objective function.

Proposition 2. Let o be the objective function over valid typings, and S be the

set-based solution. A typing Γ is extracted as follows: Γ(v) = max (S(v)) for every

variable v in P . If Γ is a valid typing, then Γ is a maximal typing of P in F under

o.

Proof. (Sketch) We show that Γ is a maximal typing. Suppose that there exists a valid

typing Γ′ > Γ. Let pi be the most-preferred partition such that Γ′−1(pi) 6= Γ−1(pi).

Since Γ′ > Γ, there must exist a variable v such that Γ′(v) = q′ ∈ pi, but Γ(v) = q /∈ pi.

In other words, Γ′ types v with Γ′(v) = q′ ∈ pi, but Γ types v differently — and

lesser in the preference ranking, because Γ′−1(pk) = Γ−1(pk) for 0 ≤ k < i (here pk

are the more-preferred partitions than pi). Since Γ(v) = max (S(v)), it follows that

q′ /∈ S(v). By Proposition 1, if q′ /∈ S(v) there does not exist a valid typing which

maps v to q′, which contradicts the assumption that Γ′ is a valid typing.

When each partition in the preference ranking has only a single element, then

the weaker assumption “there exists a valid typing Γ′ ≥ Γ′′ can be contradicted,

showing that the maximal typing is unique.

20

The optimality property holds for a type system F and a program P if and

only if the typing derived from the set-based solution S by typing each variable with

the maximally/preferred qualifier from its set, is a valid typing.

Property 1. Optimality Property. Let F be a type system augmented with objective

function o and let P be a program. The optimality property holds for F and P iff

Γ(v) = max (S(v)), for all variables v, is a valid typing.

Recall that the fixpoint can be reached in O(n2). Therefore, for type systems

for which the optimality property holds for arbitrarily annotated programs, a max-

imal typing can be computed in quadratic time, with no manual annotations. If

the programmer provides inconsistent initial annotations, the computation would

terminate within O(n2) time with a list of type errors, meaning that a valid typing

does not exist.

Remarkably, for several interesting systems (Reference Immutability Types,

Universe Types, and more, see Chapter 3 and Chapter 5), the optimality property

holds for unannotated programs, which means that the unique maximal typing can

be computed in O(n2) time with no manual annotations. However, for Ownership

Types and Information Flow Types, the optimality property does not hold. For these

type systems we developed techniques that extract the best typing (see Chapter 4

and Chapter 6).

2.4 Type Checking

Type-checking verifies the correctness of the inferred typing. The type checker

obtains the inferred typing Γ, and checks whether the typing fulfill the corresponding

typing rule. This can be easily done using the Checker Framework [18].

For example, in ReIm, suppose the inferred typing Γ for statement x = y is

Γ(x) = mutable Γ(y) = readonly

According to (tassign), it must satisfy Γ(y) <: Γ(x). However, this is not true because

readonly is not a subtype of mutable. In this case, the type checker reports a type

error and continues to the next statement.

21

In summary, we have presented the unified inference and checking framework

for context-sensitivity pluggable types. In the following chapters, we instantiate

the framework with several useful type systems, namely, ReIm, Universe Types,

Ownership Types, SFlow/Integrity, and SFlow/Confidentiality.

CHAPTER 3

Reference Immutability Types

We have briefly discussed ReIm [15], a context-sensitive type system for reference

immutability, as a running example in Chapter 2. In this chapter, we discuss the

instantiation in detail.

An immutable, or readonly, reference cannot modify the state of an object,

including the transitively reachable state. For instance, in the following code, the

Date object cannot be modified by using the immutable reference rd, but the same

Date object can be modified through the mutable reference md:

Date md = new Date(); // mutable by default

readonly Date rd = md; // an immutable reference

md.setHours(1); // OK, md is mutable

rd.setHours(1); // compile-time error, rd is readonly

The type qualifier readonly denotes that rd is an immutable reference. By

contrast to reference immutability, object immutability enforces a stronger guarantee

that no reference in the system can modify a particular object. Each variety of

immutability is preferable in certain situations [22]. This chapter only deals with

reference immutability.

As a motivating example, consider a simplification of the Class.getSigners

method which returns elements that have signed a particular class. In JDK 1.1, it is

implemented approximately as follows:

class Class {
private Object[] signers;
public Object[] getSigners() {

return signers;
}
}

This implementation is not safe because a malicious client can obtain a reference to

Portions of this chapter previously appeared as: W. Huang et al., “ReIm & ReImInfer:
Checking and inference of reference immutability and method purity,” in Proc. ACM SIGPLAN
Conf. Object-Oriented Programming, Systems, Languages, and Applications, Tucson, AZ, 2012, pp.
879–896.

22

23

the signers array by invoking the getSigners method and can then side-effect the array

to add an arbitrary trusted signer. Even though the field is declared private, the

referenced object is still modifiable from the outside. There is no language support

for preventing outside modifications, and the programmer must manually ensure

that the code only returns clones of internal data.

A solution is to use reference immutability and annotate the return value of

getSigners as readonly. (A readonly array of mutable objects is expressed, following

Java 8 syntax [2], as Object readonly [].) As a result, mutations of the array through

the returned reference will be disallowed:

Object readonly [] getSigners() {
return signers;
}
...
Object readonly [] signers = getSigners();
signers[0] = maliciousClass; // compile-time error

A type system enforcing reference immutability has a number of benefits.

It improves the expressiveness of interface design by specifying the mutability of

parameters and return values; it helps prevent and detect errors caused by unwanted

object mutations; and it facilitates reasoning about and proving other properties

such as object immutability and method purity.

There are several type systems for Reference Immutability such as the capability

system by Boyland et al. [5] and Javari by Tschantz and Ernst [6]. In this chapter,

we instantiate the inference framework with our novel type system for reference

immutability, ReIm, by giving the five framework parameters and defining the

objective function (see Chapter 2).

3.1 Type Qualifiers and Subtying Relation

There are three source-level type qualifiers in ReIm: mutable, readonly, and

polyread. These qualifiers were introduced by Javari [6] (except that polyread was

romaybe in Javari but became polyread in Javarifier [16]). They have essentially the

same meaning in Javari and ReIm, except that readonly in Javari allows certain fields

and generic type arguments to be excluded from the immutability guarantee, while

24

readonly in ReIm guarantees immutability of the entire structure.

• mutable: A mutable reference can be used to mutate the referenced object.

This is the implicit and only option in standard object-oriented languages.

• readonly: A readonly reference x cannot be used to mutate the referenced object

nor anything it references. For example, all of the following are forbidden:

– x.f = z

– x.setField(z) where setField sets a field of its receiver

– y = id(x); y.f = z where id is a function that returns its argument

– x.f.g = z

– y = x.f; y.g = z

• polyread: A polyread reference x cannot be used to mutate the referenced object.

However, x can be used to return the object, or anything it references, from m,

and the object, or what it references, may be mutated after m returns. For

example,

– x.f = 0, where x is polyread, is not allowed, but

– z = id(y); z.f = 0, where id is polyread X id(polyread X x) { return x; }, and

y and z are mutable, is allowed.

polyread expresses polymorphism (i.e., context sensitivity) over immutability.

x’s type may be interpreted as mutable in some call contexts, and it may also

be interpreted as readonly in other call contexts.

A polyread field is interpreted in the context of the receiver. For example, x.f,

where f is polyread assumes the type of x — it is mutable when x is mutable and

readonly when x is readonly. ReIm disallows mutable fields, i.e., fields can be

only readonly or polyread. This is because the mutability of a reference reflects

the mutability of its fields and allowing mutable fields would allow a reference

to be typed readonly when obviously, some of its transitive state is mutated.

This decision is motivated by our application of inferring pure methods (see

25

Section 3.7). Allowing mutable fields complicates the analysis of method purity.

In addition, this is necessary to have the maximal typing type-checked for

ReIm.

The subtyping relation between the qualifiers is

mutable <: polyread <: readonly

For example, it is allowed to assign a mutable reference to a polyread or readonly one,

but it is not allowed to assign a readonly reference to a polyread or mutable one.

3.2 Viewpoint Adaptation

Viewpoint adaptation interprets polyread in different contexts and expresses

context sensitivity in ReIm.

3.2.1 Context Sensitivity

Consider the following code.

class DateCell {
Date date;
Date getDate(DateCell this) { return this.date; }
void cellSetHours(DateCell this) {

Date md = this.getDate();
md.setHours(1); // md is mutated

}
int cellGetHours(DateCell this) {

Date rd = this.getDate();
int hour = rd.getHours(); // rd is readonly

return hour;
}
}

In the above code, this of cellGetHours may be annotated as readonly, which is

the top of the type hierarchy. Doing so is advantageous because then cellGetHours

can be called on any argument.

The return value of method DateCell.getDate is used in a mutable context in

cellSetHours and is used in a readonly context in cellGetHours. A context-insensitive

26

type system would give the return type of getDate one specific type, which would

have to be mutable. This would cause rd to be mutable, and then this of cellGetHours

would have to be mutable as well (if this.date is of type mutable, this means that the

current object was modified using this, which forces this to become mutable). This

violates our goal that this of cellGetHours is readonly.

A context-sensitive type is required for the return type of DateCell.getDate.

The effective return type will depend on the calling context. An example of calling

context is the type of the left-hand side of a call assignment.

The polymorphic qualifier polyread expresses context sensitivity. We annotate

this, the return type of getDate, and field date as polyread:

polyread Date date;
polyread Date getDate(polyread DateCell this) {

return this.date;
}

Intuitively, viewpoint adaptation instantiates polyread to mutable in the context

of cellSetHours, and to readonly in the context of cellGetHours. The call this.getDate

on line 5 returns a mutable Date, and the call this.getDate on line 9 returns a readonly

Date. As a result, the mutability of md propagates only to this of cellSetHours; it does

not propagate to this of cellGetHours which remains readonly. ReIm handles polyread

via viewpoint adaptation, and Javari/Javarifier handle polyread via templatizing

methods. The two approaches appear to be semantically equivalent. Viewpoint

adaptation however, is a more compact and scalable way of handling polymorphism

than templatizing.

Conceptually, a method must type-check with each instance of polyread replaced

by (adapted to) mutable, and with each instance of polyread replaced by readonly.

Thus, a polyread reference x cannot be used to mutate the referenced object. A

method may return x to the caller, in which case the caller might be able to mutate

the object. Programmers should use polyread when the reference is readonly in the

scope of the enclosing method, but may be modified in some caller contexts after

the method’s return.

The type of a polyread field f is adapted to the viewpoint of the receiver that

accesses the field. If the receiver x is mutable, then x.f is mutable. If the receiver

27

x is readonly, then x.f is readonly. If the receiver x is polyread, then x.f is polyread

and cannot be used to modify the referenced object, as the access might be further

instantiated with a readonly receiver. For example,

• x.f = 0, where x is polyread, is not allowed, but

• z = id(y); z.f = 0, where id is

polyread X id(polyread X x) { return x; } ,

is allowed when y and z are mutable.

We forbid mutable as a qualifier for fields. ReIm gives a strong reference immutability

guarantee, including the whole transitive state. A mutable field would not depend

on the type of the receiver and would therefore violate this guarantee.

3.2.2 Viewpoint Adaptation Operation

The viewpoint adaptation operation B in ReIm is defined as:

B mutable = mutable

B readonly = readonly

q B polyread = q

The underscore denotes a “don’t care” value. The operation means that mutable and

readonly are independent of the context, while polyread is dependent on the context

and is replaced by that context.

3.2.3 Context of Adaptation

For a field access, viewpoint adaptation qB qf adapts the declared field qualifier

qf from the point of view of receiver qualifier q. In field access y.g where the field g

is polyread, y.g takes the type of y. If y is readonly, then y.g must be readonly as well,

in order to disallow modifications of y’s object through y.g. If y is polyread then y.g

is polyread as well, propagating the context-dependency. Therefore, the function C
for field access is defined as follows:

C(y.f = x) = qy

C(x = y.f) = qy

28

For a method call x = y.m(z), viewpoint adaptation qxBq adapts q, the declared

qualifier of a formal parameter or the return value of m, from the point of view of qx,

the qualifier at the left-hand-side x of the call assignment. If a formal parameter or

the return value is readonly or mutable, its adapted type remains the same regardless

of qx. However, if q is polyread, the adapted type depends on qx — it becomes qx (i.e.,

the polyread type is the polymorphic type, and it is instantiated to qx). Thus, the

context of adaptation at a method call is the left-hand-side of the call assignment x

and the function C is defined for method call as:

C(x = y.mi(z)) = qx

In the case that there is no return value, i.e. the return value is void, ReIm assumes

that the context of adaptation is readonly.

3.3 Additional Constraints

ReIm only imposes additional constraints for (twrite), which requires that the

receiver of the field write must be mutable. Thus, we define the additional constraints

function B as:

B(y.f = x) = {y = mutable}

B returns empty set for all other statements.

3.4 Instantiated Typing Rules

By giving the above five framework parameters, the unified typing rules in

Figure 2.3 are instantiated for ReIm. The instantiated typing rules are shown in

Figure 3.1.

These typing rules impose subtying constraints, viewpoint adaptation, and

additional constraints as discussed in Chapter 2. Rule (TCALL) demands a detailed

explanation. It requires qx B qret <: qx. This constraint disallows the return value of

m from being readonly when there is a call to m, x = y.m(z), where left-hand-side

x is mutable. Only if the left-hand-sides of all call assignments to m are readonly,

can the return type of m be readonly; otherwise, it is polyread. A programmer can

29

(tnew)

Γ(x) = qx q <: qx

Γ ` x = new q C

(tassign)

Γ(x) = qx Γ(y) = qy qy <: qx

Γ ` x = y

(twrite)

Γ(x) = qx typeof (f) = qf Γ(y) = qy
qx <: qy B qf

B(y.f = x) = {qy = mutable}
Γ ` y.f = x

(tread)

Γ(x) = qx Γ(y) = qy typeof (f) = qf
qy B qf <: qx

Γ ` x = y.f

(tcall)

typeof (m) = qthis, qp → qret Γ(x) = qx Γ(y) = qy Γ(z) = qz
qy <: qx B qthis qz <: qx B qp qx B qret <: qx

Γ ` x = y.mi(z)

Figure 3.1: Instantiated Typing Rules for ReIm.

annotate the return type of m as mutable. However, this typing is pointless, because

it unnecessarily forces local variables and parameters in m to become mutable when

they can be polyread.

In addition, the rule requires qy <: qx B qthis. When qthis is readonly or mutable,

its adapted value is the same. Thus, when qthis is mutable (e.g., due to this.f = 0 in

m),

qy <: qx B qthis becomes qy <: mutable

which disallows qy from being anything but mutable, as expected. The most interesting

case arises when qthis is polyread. Recall that a polyread parameter this is readonly

within the enclosing method, but there could be a dependence between this and ret

such as

X m() { z = this.f; w = z.g; return w; }

which allows the this object to be modified in caller context, after m’s return. Well-

formedness guarantees that whenever there is dependence between this and ret, as in

30

the above example, the following constraint holds:

qthis <: qret

Recall that when there exists a context where the left-hand-side variable x

is mutated, qret must be polyread. Therefore, constraint qthis <: qret forces qthis to

be polyread (let us assume that this is not mutated in the context of its enclosing

method).

The role of viewpoint adaptation is to transfer the dependence between this

and ret in m, into a dependence between actual receiver y and left-hand-side x in the

call assignment. In the above example, there is a dependence between this and the

return ret. Thus, we also have a dependence between y and x in the call x = y.m()

— that is, a mutation of x makes y mutable as well. Function B does exactly that.

Rule (TCALL) requires

qy <: qx B qthis

when there is a dependence between this and ret, qthis is polyread, and the above

constraint becomes

qy <: qx

This is exactly the constraint we need. If x is mutated, y becomes mutable as well.

In contrast, if x is readonly, y remains unconstrained.

3.5 Type Inference

We leverage the inference framework for type inference of ReIm. Because the

maximal typing for ReIm provably type-checks (see proof below), we only need to

define (1) the initial set mapping S0, and (2) the objective function oReIm.

3.5.1 Initial Mapping

The set mapping S0 is initialized as follows. Programmer-annotated variables,

if any, are initialized to the singleton set that contains the programmer-provided

type. Note that there might be no programmer-annotated variables, because the

inference of ReIm works without any input from programmers. Method returns are

31

initialized S(ret) = {readonly, polyread} for each method m. Fields are initialized

S(f) = {readonly, polyread}. All other variables are initialized to the maximal set of

qualifiers, i.e., S(x) = {readonly, polyread,mutable}.

3.5.2 Objective Function

As discussed in Chapter 2, the objective function for ReIm is defined as

oReIm(Γ) = (|Γ−1(readonly)|, |Γ−1(polyread)|, |Γ−1(mutable)|)

The partitioning and ordering is

{readonly} > {polyread} > {mutable}

This means, informally, that we prefer readonly over polyread and mutable, and

polyread over mutable. More formally, the partitioning and ordering gives rise to a

preference ranking OReIm over all qualifiers:

OReIm : readonly > polyread > mutable

This ranking maximizes the number of readonly references. Note that leaving all

references as mutable is also a valid typing but a useless one, as it expresses nothing

about immutability.

3.5.3 Maximal Typing

By picking the maximal qualifier from each set of variables, the resulting

maximal typing for ReIm is correct, precise, and maximal. The following propositions

formalize its properties.

Proposition 3. The maximal typing type-checks under the rules from Figure 3.1.

Proof. (Sketch) The proof is a case-by-case analysis which shows that after the

application of the SolveConstraint(c) function for each constraint c in statement

s, the rule type-checks with the maximal assignment on statement s. Let max (S(x))

return the maximal element of S(x) according to the preference ranking (which is

32

the same as the type hierarchy). We show (TCALL) x = y.m(z). The rest of the cases

are straightforward.

• Let max (S(x)) be readonly.

If max (S(this)) is readonly or polyread, qy <: qx B qthis holds for any value

of max (S(y)). If max (S(this)) is mutable, the only possible max for y would

be mutable (the others would have been removed by SolveConstraint(c)

where c is qy <: qx B qthis). qz <: qx B qp is analogous to qy <: qx B qthis.

qx B qret <: qx holds for any value of max (S(ret)).

• Let max (S(x)) be mutable.

If max (S(this)) is readonly, qy <: qx B qthis holds for any value of max (S(y)).

If max (S(this)) is polyread, the only possible value for max (S(y)) would be

mutable. If max (S(this)) is mutable, the only possible max for y would be

mutable as well (the others would have been removed by SolveConstraint(c)

where c is qy <: qx B qthis).

If max (S(ret)) is polyread, clearly qx B qret <: qx holds. max (S(ret)) cannot

be readonly, readonly would have been removed by the function.

• Let max (S(x)) be polyread.

If max (S(this)) is readonly, qy <: qx B qthis holds for any value of max (S(y)).

If max (S(qthis)) is polyread, the only possible values for max (S(y)) would be

polyread or mutable. If max (S(qthis)) is mutable, the only possible max for y

would be mutable.

If max (S(ret)) is polyread, clearly qx B qret <: qx holds. max (S(ret)) cannot

be readonly, readonly would have been removed by the function.

Recall Proposition 2 (see Chapter 2) which states that a valid maximal typing

maximizes the objective function. Since the maximal typing for ReIm is valid

according to Proposition 3, it maximizes the objective function oReIm. In addition,

the maximal typing is unique. Thus, the optimality property holds and we have

found the best typing.

33

1 class A {
2 X f; S(f) = {polyread}

3 X get(A this, Y y) { S(thisget) = {polyread,mutable}

4 ... = y.h; S(yget) = {readonly, polyread,mutable}

5 X x = this.getF(); S(xget) = {polyread,mutable}

6 return x; S(retget) = {polyread}

7 }
8 X getF(A this) { S(thisgetF) = {polyread,mutable}

9 X x = this.f; S(xgetF) = {polyread,mutable}

10 return x; S(retgetF) = {polyread}

11 }
12 }
13 void setG() {
14 A a = ... S(asetG) = {mutable}

15 Y y = ... S(ysetG) = {readonly, polyread,mutable}

16 X x = a.get(y); S(xsetG) = {mutable}
17 x.g = null;
18 }
19 void getG() {
20 A a = ... S(agetG) = {readonly, polyread,mutable}

21 Y y = ... S(ygetG) = {readonly, polyread,mutable}

22 X x = a.get(y); S(xgetG) = {readonly, polyread,mutable}

23 ... = x.g;
24 }

Figure 3.2: Inference Example for ReIm. A.get(Y) has different muta-
bilities in the contexts of setG and getG. Also, A.getF(), which is called
from A.get(Y), has different mutabilities in different calling contexts. The
box beside each statement shows the set-based solution; the underlined
qualifiers are the final qualifiers picked by ReIm.

3.6 Inference Example

Consider the example in Figure 3.2. We use xget to denote the reference x in

method get. Initially, all references are initialized to the sets as described above.

The analysis iterates over all statements in class A and in methods setG and getG. In

34

the first iteration, the analysis changes nothing until it processes x.g = null in setG.

S(xsetG) is updated to {mutable}. In the second iteration, when the analysis processes

x = a.get(y) in setG, S(retget) becomes {polyread}. In the third iteration, S(xget)

becomes {polyread,mutable} because xget has to be a subtype of S(retget). This in turn

forces S(retgetF) and subsequently S(thisgetF) to become {polyread,mutable}. The

iteration continues until it reaches the fixpoint as shown in the boxes in Figure 3.2.

For brevity, some references are not shown in the boxes. The underlined qualifiers

are the maximal element in the preference ranking.

3.7 Method Purity Inference

In this section, we present method purity inference built as extension of ReIm.

A method is pure (or side-effect free) when it has no visible side effects.

Knowing which methods are pure has a number of practical applications. It can

facilitate compiler optimization [23, 24, 25], model checking [26], Universe Type

inference [17, 27], memoization of function calls [28], and so on.

We adopt the definition of purity given by Sălcianu and Rinard [29]: a method

is pure if it does not mutate any object that exists in prestates. Thus, a method is

pure if (1) it does not mutate prestates reachable through parameters, and (2) it does

not mutate prestates reachable through static fields. The definition allows a pure

method to create and mutate local objects, as well as to return a newly constructed

object as a result. This is the semantics of the @Pure annotation in JML.

For a method that does not access static fields, the prestates it can reach are

the objects reachable from the actual arguments and the method receiver. Therefore,

if any of the formal parameters of m or implicit parameter this is inferred as mutable

by reference immutability inference, m is impure. Otherwise, i.e., if none of the

parameters is inferred as mutable, m is pure. Consider the implementation of List

in the left column of Figure 3.3. For method add, reference immutability inference

infers that both n and this are mutable, i.e., the objects referred by them may be

mutated in add. When there is a method invocation lst.add(node), we know that

the prestates referred to by the actual argument node and the receiver lst may be

mutated. As a result, we can infer that method add is impure. We can also infer

35

class List {
Node head;
int len;
void add(Node n) {

n.next = this.head;
this.head = n;
this.len++;
}
void reset() {

this.head = null;
this.len = 0;
}
int size() {

return this.len;
}
}

class Main {
static List sLst;
void m1() {

List lst = ...
Node node = ...
lst.add(node);
Main.sLst = lst;
}
void m2() {

int len = sLst.size();
PrintStream o = System.out;
o.print(len);
}
void m3() {

m2();
}
}

Figure 3.3: A simple linked list and example usage.

that method reset is impure because implicit parameter this is inferred as mutable by

reference immutability inference. Method size is inferred as pure because its implicit

parameter this is inferred as readonly and it has no formal parameters.

However, the prestates can also come from static fields. A method is impure if

it mutates (directly, or indirectly through callees), a static field, or objects reachable

from a static field. We introduce a static immutability type qm for each method m.

Roughly, qm is mutable when m accesses static state through some static field and

then mutates this static state; qm is polyread if m accesses static state but does not

mutate this state directly, however, m may return this static state to the caller and

the caller may mutate it; qm is readonly otherwise. Static immutability types are

computed using reference immutability. We introduce a function statictypeof that

retrieves the static immutability type of m:

statictypeof (m) = qm

We extend the program syntax with two additional statements (TSWRITE) sf = x for

static field write, and (TSREAD) x = sf for static field read. Here x denotes a local

36

(tswrite)

methodof (sf = x) = m statictypeof (m) = qm qm = mutable
Γ(sf) = qsf Γ(x) = qx qx <: qsf

Γ ` sf = x
(tsread)

methodof (x = sf) = m statictypeof (m) = qm
Γ(sf) = qsf Γ(x) = qx qm <: qx qsf <: qx

Γ ` x = sf

(tcall)

Γ(x) = qx Γ(y) = qy Γ(z) = qz typeof (m) = qthis, qp → qret
qy <: qx B qthis qz <: qx B qp qx B qret <: qx
methodof (x = y.m(z)) = m′ statictypeof (m) = qm

statictypeof (m′) = qm′ qm′ <: qx B qm

Γ ` x = y.m(z)

Figure 3.4: Extended typing rules for static fields (see Figure 3.1 for the
base type system). Function methodof (s) returns the enclosing method
of statement s. Function statictypeof (m) returns the static immutability
type of m. Static immutability types can be readonly, polyread, or mutable.
Rule (TCALL) includes the antecedents from the base type system and the
new antecedents that handle the static immutability type of method m,
underlined.

variable and sf denotes a static field.

In contrast to instance fields, static fields are declared as either readonly or

mutable. There is no receiver for static field accesses and therefore no substitution

for polyread would occur.

Figure 3.4 extends the typing rules from Figure 3.1 with constraints on static

immutability types. If method m contains a static field write sf = x, then its static

immutability type is mutable (see rule (TSWRITE)). If m contains a static field read x =

sf where x is inferred as mutable, qm becomes mutable as well (see rule (TSREAD)). While

the handling of (TSWRITE) is expected, the handling of (TSREAD) may be unexpected.

If sf is read in m, using x = sf, then m or one of its callees can access and mutate

the fields of sf through x. If m or one of its callees writes a field of sf through x,

then x will be mutable. If m does not write x, but returns x to a caller and the caller

subsequently writes a field of the returned object, then x will be polyread. x being

37

readonly guarantees that x is immutable in the scope of m and after m’s return, and

sf is not mutated through x. Note that aliasing is handled by the type system which

disallows assignment from readonly to mutable or polyread. Consider the code:

void m() {
...
x = sf; // a static field read

y = x.f;
z = id(y);
z.g = 0;
...
}

Here static field sf has its field f aliased to local z, which is mutated. The type system

propagates the mutation of z to x; thus, the constraints in Figure 3.4 set the static

immutability type of m to mutable.

Rule (tcall) in Figure 3.4 captures two cases:

1. If the callee m mutates static fields, i.e. statictypeof (m) = mutable, the

statictypeof (m′) of enclosing method m′ has to be mutable as well, because

B mutable = mutable.

2. If the callee m returns a static field which is mutated later, statictypeof (m)

would be polyread. If the enclosing method m′ mutated the return value x, i.e.

qx = mutable, statictypeof (m′) would be mutable because mutable B polyread =

mutable. Otherwise, if x is polyread, statictypeof (m′) is constrained to polyread

or mutable. Finally, if x is readonly, statictypeof (m′) is readonly, indicating that

m′ does not mutate static fields.

Method overriding is handled by an additional constraint. If m′ overrides m we

must have

qm <: qm′

In other words, if m′ mutates static state, qm must be mutable, even if m itself does

not mutate static state. This constraint ensures that m′ is a behavioral subtype of m

and is essential for modularity.

Static immutability types are inferred in the same fashion as reference im-

mutability types. The analysis initializes every S(m) to {readonly, polyread,mutable}

38

and iterates over the constraints generated by the statements in Figure 3.4 and the

overriding constraints, until it reaches the fixpoint. If readonly remains in S(m) at

the end, the static immutability type of m is readonly; otherwise, it is polyread or

mutable.

Consider the right column of Figure 3.3. qm1 becomes mutable because m1

assigns lst to the static field sLst. qm2 is mutable as well, because it mutates the

PrintStream object referred by System.out by invoking the print method on it (note

that the implicit this parameter of print is mutable), and local variable o is mutable.

qm3 becomes mutable as well, because it invokes method m2 and qm2 is mutable. Since

qm1, qm2, and qm3 are mutable, this implies that these methods have mutated the

presents through static fields.

The observant reader has likely noticed that qm = mutable does not account

for all mutations of static state in m. In particular, static state may be aliased to

parameters and be accessed and mutated in m through parameters:

void m(X p) {
p.g = 0;
}
...
void n() {

X x = sf; // a static field read (TSREAD)

m(x);
}

In the above example, qm is readonly, even though m mutates static state. Interestingly,

this is not unsound. Note however that method m is impure, because there is a

write to its parameter. Parameter and static mutability types capture precisely the

information needed to infer purity as we shall see shortly.

We infer that a method m is pure if all of its parameters, including implicit

parameter this, are not mutable (i.e., they are readonly or polyread), and its static

immutability type is not mutable (i.e., it is readonly or polyread). More formally, let

39

typeof (m) = qthis, qp → qret and statictypeof (m) = qm. We have:

pure(m) =

false if qthis = mutable or

qp = mutable or

qm = mutable

true otherwise

As discussed earlier, a method m can be impure because: (1) prestates are mutated

through parameters, or (2) prestates are mutated through static fields. If prestates

are mutated through parameters, then this will be captured by the mutability of this

and p. Now, suppose that prestates are not mutated through parameters, but are

mutated after access through a static field. In this case, there must be an access in

m to a static field sf through (TSREAD) or (TSWRITE), and the mutation is captured

by the static immutability type qm.

CHAPTER 4

Ownership Types

Aliasing is a powerful feature of object-oriented programming as it makes sharing

states among objects easier. However, it is also a weakness of object-oriented

programming [7]. When an object’s internal state is aliased, it loses full control of

its own state; thus, it cannot prevent unwanted mutation from happening. This

imposes the following problems for object-oriented programming:

• Bugs are difficult to detect. Because aliasing leads to cross references among

different objects, it is very hard to find out which parts of an object are

potentially changed by the code under consideration [30].

• Automatic memory management becomes difficult. The life time of an object

is hard to track because of aliasing.

• Modular reasoning about programs becomes difficult. Without any control or

knowledge of the aliasing and effect, modular reasoning is not possible [31, 32].

The Geneva Convention on Treatment of Object Aliasing categorizes approaches

for treating object aliasing [33]:

• Detection. Static or dynamic (run-time) diagnosis of potential or actual aliasing.

• Advertisement. Annotations that help modularize detection of aliasing by

declaring aliasing properties of methods.

• Prevention. Constructs that disallow aliasing in a statically checkable fashion.

• Control. Mechanisms that isolate the effects of aliasing.

Many researchers have explored different approaches for treating aliasing.

Object ownership, as a prevention mechanism, has been successfully applied in

Portions of this chapter previously appeared as: W. Huang et al., “Inference and checking of
object ownership,” in Proc. European Conf. Object-Oriented Programming, Beijing, China, 2012,
pp. 181–206.

40

41

prevention and detection of data races [34, 35], efficient message passing [36], modular

reasoning [31, 37], and more.

Recall the getSigners example in Chapter 3. The keyword private only provides

name-based protection on the internal array signers. Thus, this private information

can still be leaked out when clients invoke getSigners(). In contrast, ownership

provides control-based protection. With object ownership, the getSigners bug can be

detected in the compilation stage if the programmer annotated the internal array as

rep, which denotes that the reference is owned by the current object and it cannot

be exposed to the outside world.

class Class {
private Object rep [] signers;
public Object rep [] getSigners() {

return signers;
}
}

As a result, the following code in clients will fail type-checking at compile time:

Object rep[] a = c.getSigners();

because rep of a and rep of signers refer to different owners: a is owned by the current

this object but signers is owned by the c object. A solution is to use ownership types

and annotate the internal array signers as rep. As a result, the internal representation

signers of the Class object cannot be exposed to the outside, thus protecting the

signers from unwanted modifications from outside.

There are many different ownership type systems in the literature [7, 8, 38,

39, 40]. Most of them enforce the owner-as-dominator discipline: all accesses to an

object have to go through its owner. In other words, the owner has full control of the

(transitively) owned objects. Recall the above getSigners example. When the signers

is annotated as rep, all accesses to the array have to go through its owner, which is

the Class object. Return of the signers reference through invocation of c.getSigners()

is not allowed.

In this chapter, we instantiate the inference framework with the classical

Ownership Types (OT) [7] which enforce the owner-as-dominator discipline. We

illustrate how OT can be specified, inferred and checked in our framework. We

42

restrict OT to one ownership parameter, as our experience with real world programs

suggests that one ownership parameter is sufficient in practice (see Section 7.2.3).

4.1 Type Qualifiers and Subtying Relation

There are three base ownership modifiers in Ownership Types:

• rep refers to the current object this.

• own refers to the owner of the current object.

• p is an ownership parameter passed to the current object.

OT qualifiers have the form 〈q0|q1〉, where q0 and q1 are one of rep, own, or

p. A qualifier 〈q0|q1〉 for reference variable x is interpreted as follows. Let i be the

object referenced by x. q0 is the owner of i, from the point of view of the current

object, and q1 is the ownership parameter of i, again, from the point of view of the

current object. Informally, the ownership parameter q1 refers to an object, which

objects referenced by i might use as owner. For example, 〈rep|own〉 x means that

the owner of i is the current object this, and the ownership parameter passed to i is

the owner of the current object. Transitively, objects referenced by i, for example,

from its fields, can have as owner (1) i itself, by using rep, (2) the current object, by

using own, or (3) the owner of the current object, by using p.

There are six type qualifiers in OT: 〈rep|rep〉, 〈rep|own〉, 〈rep|p〉, 〈own|own〉,
〈own|p〉, 〈p|p〉. These ownership types give rise to an encapsulation structure called

ownership tree, where nodes denote objects and the parent of a node denotes its

owner.

There is no subtyping relation between these type qualifiers, which means both

sides of an assignment (explicit or implicit) must have the same type qualifier.

Figure 4.1 shows the XStack program from [7] annotated with Ownership Types.

Link contains two fields: next and data. next (line 21) is of type 〈own|p〉 which means

that all Link objects have the same owner. data (line 22) is of type 〈p|p〉 which can

be bound to the ownership parameter of XStack. This means that the data is not

necessarily owned by Link or XStack.

43

1 class XStack {
2 〈rep|p〉 Link top;
3 XStack() {
4 top = null;
5 }
6 void push(〈p|p〉 X d1) {
7 〈rep|p〉 Link newTop;

8 newTop = new 〈rep|p〉 Link(); l

9 newTop.init(d1);
10 newTop.next = top;
11 top = newTop;
12 }
13 void main(String[] arg) {
14 〈rep|rep〉 XStack s;
15 s = new 〈rep|rep〉 XStack(); s

16 〈rep|rep〉 X x = new 〈rep|rep〉 X(); x

17 s.push(x);
18 }
19 }
20 class Link {
21 〈own|p〉 Link next;
22 〈p|p〉 X data;
23 void init(〈p|p〉 X d2) {
24 next = null;
25 data = d2;
26 }
27 }

Figure 4.1: Annotated XStack with Ownership Types. The boxed italic
letters denote object allocation sites.

XStack is built from a singly-linked list of Link nodes. Because we do not know

the owners of the data elements, the data (line 22) is typed as 〈p|p〉 which can be

instantiated by the actual owners of the data elements (it is bound to the root in

this example). This is similar to generic classes with parametric polymorphism —

the XStack is reusable because of the ownership parameter. At line 8, a new instance

of Link is typed as 〈rep|p〉, which means its owner is the current XStack object.

Interestingly, all neighbours of the new Link instance are owned by the same XStack

instance. Because newTop.next and newTop have the same owner (recall next is of

44

(a) Object graph (b) Ownership tree of XStack in OT

Figure 4.2: Object graph (left) and ownership tree (right) for XStack for
the example in Figure 4.1. In the object graph we show all references
between objects. In the ownership tree we draw an arrow from the owned
object to its owner and put all objects with the same owner into a dashed
box.

type 〈own|p〉), and the owner of newTop is the current XStack object, we conclude

that the current XStack object is also the owner of newTop.next. Using this same

argument, we know the XStack object owns all the links, which means all accesses to

the links have to go through their owner — the XStack object. An XStack instance

s and an X instance x are constructed in the static main method with 〈rep|rep〉
annotation at line 15 and 16, respectively.

Figure 4.2 shows the object graph and the corresponding ownership tree. The

s object and the x object are owned by the root. And the Link object l is owned by

the s object.

4.2 Viewpoint Adaptation

Viewpoint adaptation in Ownership Types encodes the relation between the

current this object and its transitively reachable objects.

4.2.1 Viewpoint Adaptation Operation

In Ownership Types, viewpoint adaptation is applied only when the adaptation

context (q in qBq′) is not this. This is because the ownership context does not change

at field access and method call when the receiver is this. Therefore, we introduce

the type qualifier self. Any type q adapting from the context self yields q itself, i.e.

45

self B q = q. Note that self is used only internally, to distinguish field access and

method calls through this from ones not through this. Programmers cannot annotate

any reference as self. The default type for the implicit parameter this is 〈own|p〉.
Viewpoint adaptation operation of Ownership Types is defined as follows:

〈q0|q1〉 B 〈own|own〉 = 〈q0|q0〉
〈q0|q1〉 B 〈own|p〉 = 〈q0|q1〉
〈q0|q1〉 B 〈p|p〉 = 〈q1|q1〉

self B 〈q0|q1〉 = 〈q0|q1〉

Viewpoint adaptation disallows that the adapted type contains rep, which accounts

for the static visibility constraint [7].

As an example, let us discuss the first rule: the adapted type of 〈own|own〉
from the point of view of 〈q0|q1〉 is 〈q0|q0〉. If an object i has type 〈q0|q1〉 from the

point of view of the current this object, this means that the owner of i is q0. If object

j has type 〈own|own〉 from the point of view of i, this means that both j’s owner

and ownership parameter are instantiated to the owner of i. Therefore, j will have

type 〈q0|q0〉 from the point of view of this.

4.2.2 Context of Adaptation

Recall that no viewpoint adaptation is needed when the receiver is this at field

access or method call. Therefore, the context of adaptation function C returns self

when the receiver is this, and returns the type of the receiver otherwise:

C(y.f = x) =

 self if y = this

qy otherwise

C(x = y.f) =

 self if y = this

qy otherwise

C(x = y.mi(z)) =

 self if y = this

qy otherwise

46

For example, consider a field read x = y.f where y 6= this. C(x = y.f) returns qy.

Let y have type qy = 〈rep|rep〉 and let field f have type qf = 〈own|p〉. Then y.f has

type 〈rep|rep〉. The first rep in this type can be explained as follows: Owner own in

the type of f gives us that the owner of the f object is the same as the owner of the y

object, and owner rep in the type of y gives us that the owner of the y object is the

current this object. Thus, the owner of the f object, from the point of view of the

current object, is the current object.

4.2.3 Additional Constraints

In Ownership Types, all B sets are empty as the system does not impose

additional constraints beyond the standard subtyping and viewpoint adaptation

constraints. Note that the subtyping constraints degenerate into equality constraints

as OT does not have a subtyping relation.

4.3 Instantiated Typing Rules

The instantiated typing rules for Ownership Types are shown in Figure 4.3.

Note that for readability, we separate the typing rules (twrite), (tread), and (tcall)

when the receiver is this. The instantiated typing rules still fit into the framework.

4.4 Type Inference

In this section, we first define the initial set mapping S0 and the objective

function oOT to leverage the inference framework for type inference of Ownership

Types. Then we discuss the maximal typing for Ownership Types.

4.4.1 Initial Mapping

S0 is initialized as follows. Programmer-annotated variables are initialized to

the singleton set of the provided type. The implicit parameter this is initialized

S(this) = {〈own|p〉}. Library variables are initialized to {〈own|p〉, 〈p|p〉} in order to

handle containers from Java library. All other variables are initialized to the maximal

set of qualifiers, i.e., S(x) = {〈rep|rep〉, 〈rep|own〉, 〈rep|p〉, 〈own|own〉, 〈own|p〉, 〈p|p〉}.

47

(tnew)

Γ(x) = qx q <: qx

Γ ` x = new q C

(tassign)

Γ(x) = qx Γ(y) = qy qy <: qx

Γ ` x = y

(twrite)

Γ(x) = qx typeof (f) = qf Γ(y) = qy
qx <: qy B qf

Γ ` y.f = x

(tread)

Γ(x) = qx Γ(y) = qy typeof (f) = qf
qy B qf <: qx

Γ ` x = y.f

(twritethis)

Γ(x) = qx typeof (f) = qf
qx <: qf

Γ ` this.f = x

(treadthis)

Γ(x) = qx typeof (f) = qf
qf <: qx

Γ ` x = this.f

(tcall)

typeof (m) = qthis, qp → qret Γ(x) = qx Γ(y) = qy Γ(z) = qz
qy <: qy B qthis qz <: qy B qp qy B qret <: qx

Γ ` x = y.mi(z)

(tcallthis)

typeof (m) = qthis, qp → qret Γ(x) = qx Γ(y) = qy Γ(z) = qz
qy <: qthis qz <: qp qret <: qx

Γ ` x = this.mi(z)

Figure 4.3: Instantiated Typing Rules for Ownership Types. For read-
ability we include separate typing rules when the receiver is this.

4.4.2 Objective Function

OT cannot use an objective function with one qualifier per partition. Informally,

the base modifiers are preference-ranked as

rep > own > p

but, say, 〈rep|rep〉 should not carry more weight than 〈rep|p〉. The objective function

should maximize the number of rep owners regardless of ownership parameters.

To illustrate this point, suppose that qualifiers 〈q0|q1〉 were ordered lexicograph-

ically based on the ranking of base modifiers, and consider Figure 4.4. A variable

48

root

i

m k

l

j

l’

root

i

m k l l’

j

root

m i

k

l l’

j

(a) Object graph (b) OT tree for Γ1 (c) OT tree for Γ2

Figure 4.4: Ownership trees resulting from typings Γ1 and Γ2. Edges
i→ m and k → l (shown in red in the object graph) cannot be typed with
owner rep simultaneously.

roughly corresponds to an edge in the object graph, and therefore, we use typing of

edges instead of typing of variables. Edges i→ m and k → l cannot be typed with

owner rep simultaneously, because of the restriction to one ownership parameter.

Thus, one valid typing, call it Γ1, types root→ i, root→ j and i→ m as 〈rep|rep〉,
i → k as 〈rep|own〉, and the rest of the edges as either 〈own| 〉 or 〈p|p〉. Γ1 gives

rise to the ownership tree in Figure 4.4(b); Γ1 flattens the tree at l and l′ — the

owner of l and l′ is i, even though k dominates both l and l′ and we would like to

have k as the owner of l and l′. Another valid typing, call it Γ2, types root → i,

root→ j as 〈rep|rep〉, i→ k as 〈rep|own〉, k → l and k → l′ as 〈rep|p〉, and the rest

of the edges as either 〈own| 〉 or 〈p|p〉. Γ2 gives rise to the tree in Figure 4.4(c); this

tree is better than the tree in Figure 4.4(b) because it has more dominance. Note

that lexicographical ordering ranks Γ1 higher than Γ2 because it contains 3 〈rep|rep〉
typings, while Γ2 contains only 2 〈rep|rep〉 typings. However, Γ2 is the better typing,

because it contains 5 〈rep| 〉 typings, one more than Γ1, and therefore, it preserves

more dominance in the ownership tree than Γ1.

In OT, the objective function is instantiated as

oOT (Γ) = (|Γ−1(〈rep| 〉)|, |Γ−1(〈own| 〉)|, |Γ−1(〈p| 〉)|)

Here Γ−1(〈rep| 〉) is the set of variables typed with owner rep, i.e., typed 〈rep|rep〉,

49

〈rep|own〉 or 〈rep|p〉. Γ−1(〈own| 〉) is the set of variables typed with owner own,

and Γ−1(〈p| 〉) is the set of variables typed with owner p. The primary goal is to

maximize the number of variables typed with owner rep (regardless of ownership

parameters). Thus, the ranking maximizes the number of edges in the object graph

that are typed rep , or in other words, the best typing preserves the most dominance

(ownership). This is a good proxy for a deep OT ownership tree. oOT does not give

rise to such ranking (e.g., 〈rep|rep〉 and 〈rep|p〉 are equally preferred by oOT). We

use lexicographical order over the base modifiers:

OOT : 〈rep|rep〉 > 〈rep|own〉 > 〈rep|p〉 > 〈own|own〉 > 〈own|p〉 > 〈p|p〉

OOT preserves the partition ranking (e.g., 〈rep|p〉 > 〈own|own〉) and preference-ranks

qualifiers within partitions (e.g., 〈rep|rep〉 > 〈rep|own〉 > 〈rep|p〉).

4.4.3 Maximal Typing

There are multiple typings that maximize the objective function oOT for

Ownership Types. Consider the following program:

x = new X(); x

y = new Y(); y

x.f = y;

There are variables x, y, field f, and allocation sites x and y. Typing Γ1 types the

program as follows: Γ1(x) = Γ1(x) = 〈rep|own〉, Γ1(y) = Γ1(y) = 〈rep|own〉, and

Γ1(f) = 〈own|p〉. Typing Γ2 types the program as follows:. Γ2(x) = Γ2(x) = 〈rep|rep〉,
Γ2(y) = Γ2(y) = 〈rep|rep〉, and Γ2(f) = 〈own|own〉. Clearly, oOT (Γ1) = oOT (Γ2) =

(4, 1, 0). There are other valid typings that maximize oOT as well. There are nontrivial

examples as well.

In addition, the optimality property does not always hold in Ownership Types.

As an example, consider the program:

x = new A();

y = new 〈own|own〉 C();

x.f = y;

50

The application of transfer functions yields S(x) = {〈rep|own〉, 〈own|own〉, 〈own|p〉},
S(f) = {〈own|own〉, 〈own|p〉, 〈p|p〉} and S(y) = {〈own|own〉}. If we map every vari-

able to the maximal qualifier we have

Γ(x) = 〈rep|own〉, Γ(f) = 〈own|own〉, Γ(y) = 〈own|own〉

which fails to type-check because 〈rep|own〉B〈own|own〉 equals 〈rep|rep〉, not 〈own|own〉.
The set-based solution contains several valid typings. If we chose the maximal value

at x, we will have typing

Γ(x) = 〈rep|own〉, Γ(f) = 〈p|p〉, Γ(y) = 〈own|own〉

and if we chose the maximal value at f, we will have

Γ(x) = 〈own|own〉, Γ(f) = 〈own|own〉, Γ(y) = 〈own|own〉

The set-based solution is valuable for two reasons. First, it restricts the search

space significantly. Initially, there are 6 possibilities for each variable and there

are n variables, leading to 6n potential typings. Second, the set-based solution

highlights the points of non-determinism where programmer-provided annotations

can guide the inference to choose one typing over another. With a small number of

programmer-provided annotations, OT inference can scale up to large programs. We

explain the process in the remainder of this section.

The points of non-determinism arise at field access and method call statements

due to viewpoint adaptation. A statement s is a conflict if it does not type-check

with the maximal assignment derived from the set-based solution. In the example

above, statement x.f = y is a conflict, because if we map every variable to the

maximal qualifier, the statement fails to type-check. Our approach performs the

following incremental process. Given a program P , which may be unannotated or

partially annotated, the tool runs the set-based solver, and if there are conflicts,

these conflicts are printed. The programmer selects a subset of conflicts (usually the

first 1 to 5), and for each conflict, annotates variables. Then the programmer runs

51

Table 4.1: Inference of Ownership Types for the example in Figure 4.1.

Variable Initial Iteration 1 Iteration 2 Iteration 3

top all all 〈rep|p〉 〈rep|p〉
d1 all 〈p|p〉 〈p|p〉 〈p|p〉
newTop all 〈rep|p〉 〈rep|p〉 〈rep|p〉
new Link() 〈rep|p〉 〈rep|p〉 〈rep|p〉 〈rep|p〉
s all all all all
new XStack() all all all all
x all all all all
new X() all all all all
next all 〈own|own〉, 〈own|p〉, 〈p|p〉 〈own|p〉 〈own|p〉
data all 〈own|own〉, 〈own|p〉, 〈p|p〉 〈p|p〉 〈p|p〉
d2 all 〈own|own〉, 〈own|p〉, 〈p|p〉 〈p|p〉 〈p|p〉

the set-based solver again. This process continues until a program P ′ is reached,

where the optimality property holds for P ′. The solver computes a maximal typing

for P ′.

In the above example, the solver prints conflict x.f = y and the set-based

solution

S(x) = {〈rep|own〉, 〈own|own〉, 〈own|p〉}
S(f) = {〈own|own〉, 〈own|p〉, 〈p|p〉}
S(y) = {〈own|own〉}

If the programmer chooses to annotate x with 〈rep|own〉, this results in typing

Γ(x) = 〈rep|own〉, Γ(f) = 〈p|p〉, Γ(y) = 〈own|own〉

and if he/she chooses to annotate f with 〈own|own〉 this results in typing

Γ(x) = 〈own|own〉, Γ(f) = 〈own|own〉, Γ(y) = 〈own|own〉

4.5 Inference Example

Table 4.1 shows the computation of the set-based solution for the example

program in Figure 4.1. Note that this computation assumes annotation 〈rep|p〉 at

allocation site new Link(); given this annotation, the optimality property holds, and

the set-based solution computes the maximal typing for the program.

CHAPTER 5

Universe Types

In Chapter 4 we have discussed the classic Ownership Types which enforce the

owner-as-dominator encapsulation discipline. Other ownership type systems enforce

the owner-as-modifier discipline: an object can be referenced by any other object,

but access paths that do not go through its owner cannot modify it. That is, an

object o can only be modified by its owner, or its peers (i.e. the objects that have

the same owner as o).

Universe Types (UT) [8, 20], is a lightweight ownership type system that

optionally enforces the owner-as-modifier encapsulation discipline. Universe Types

distinguishes readwrite references and readonly references, and the owner-as-modifier

discipline is only enforced on readwrite references [8]. Owners only control modifica-

tions of owned objects, but not read access.

In this chapter, we instantiate the inference framework with Universe Types.

5.1 Type Qualifiers and Subtyping Relation

There are three source-level qualifiers in UT:

• peer: an object that is referenced by a peer reference x is part of the same

representation as the current object. In other words, the two objects have the

same owner.

• rep: an object that is referenced by a rep reference x is part of the current (i.e.,

this) object’s representation. In other words, the current object is the owner

of the object referenced by x.

• any: the any qualifier does not provide any information about the ownership of

the object.

Portions of this chapter previously appeared as: W. Huang et al., “Inference and checking of
object ownership,” in Proc. European Conf. Object-Oriented Programming, Beijing, China, 2012,
pp. 181–206.

52

53

rep	 peer	

lost	

any	

Figure 5.1: Subtying Hierarchy of Universe Types.

The formalization of Universe Types uses the qualifier lost to express that

the result of viewpoint adaptation cannot be expressed statically, that is, a type

declaration enforces an ownership constraint, but the constraint is not expressible

from the current viewpoint. Qualifier lost is used only internally and users cannot

annotate references as lost.

The qualifiers form the following subtyping relation:

rep <: lost peer <: lost lost <: any

that is, qualifiers peer and rep are incomparable to each other and are subtypes of

lost, and all qualifiers are below any. The subtyping hierarchy is shown in Figure 5.1.

Figure 5.2 shows a doubly-linked list implementation from [8] annotated with

UT. Class Node contains two peer references: prev and next, and an any reference

elem. first at line 7 is declared as rep denoting that the object referred by first is

owned by the LinkedList instance. The capture method at line 12 is trying to assign

some foreign node to the first field. But the assignment at line 13 is illegal, because

first and n have different owners: first’s owner is the current LinkedList instance, while

n’s owner is the owner of the current LinkedList instance, as n is of type peer.

The assignment at line 18 is also illegal because it violates the owner-as-modifier

discipline by directly modifying the internal representation of another list l. This

violation can be detected statically. The owner of l.first is l, because first is of type

rep. According to the owner-as-modifier discipline, an object can only be modified

by its owner or its peers. The current LinkedList instance is neither the owner nor

peers of l.first, thus this assignment is detected as illegal. This is more clear in the

54

1 class Node {
2 peer Node prev;
3 peer Node next;
4 any Object elem;
5 }
6 class LinkedList {
7 rep Node first;
8 LinkedList(any Object e) {
9 first = new rep Node(); n

10 first.elem = e;
11 }
12 void capture(peer Node n) {
13 first = n; // illegal

14 }
15 void exchangeFirst(peer LinkedList l) {
16 any Object tmp = first.elem;
17 first.elem = l.first.elem;
18 l.first.elem = tmp; // illegal

19 }
20 void static main(String[] args) {
21 Object e1 = new Object(); e1

22 LinkedList l1 = new LinkedList(e1); l1

23 Object e2 = new Object(); e2

24 LinkedList l2 = new LinkedList(e2); l2
25 l2.exchangeFirst(l1);
26 }
27 }

Figure 5.2: Annotated doubly-linked list.

resulting object graph and ownership tree in Figure 5.3. The n in the shadow of l1 is

owned by l1, but l2 is neither the owner nor the peer of this n. Hence, modification

of this n is illegal in l2.

5.2 Viewpoint Adaptation

Viewpoint adaptation in Universe Types encodes the relation between the

current this object and its transitively reachable objects.

55

(a) Object graph (b) Ownership tree of LinkedList in UT

Figure 5.3: Object graph (left) and ownership tree (right) for LinkedList.

5.2.1 Viewpoint Adaptation Operation

Similarly to Ownership Types, viewpoint adaptation is applied only when the

receiver variable is not this. Therefore, we reuse the self qualifier as in Ownership

Types. Viewpoint adaptation operation of Universe Types is defined as follows:

peer B peer = peer

rep B peer = rep

B any = any

self B q = q

q B q′ = lost otherwise

5.2.2 Context of Adaptation

Similar to OT, the context of adaptation function distinguishes the cases when

the receiver is this at field access and method call:

C(y.f = x) =

 self if y = this

qy otherwise

C(x = y.f) =

 self if y = this

qy otherwise

C(x = y.mi(z)) =

 self if y = this

qy otherwise

56

For example, consider y.f = x where y 6= this and the context of adaptation is

qy. If y is rep, then the current object is the owner of the y object. If the type of f is

peer, then the y object and field f object are peers. Therefore, the current object is

the owner of the f object, which is expressed by the fact that the type of f, adapted

from the point of view of y’s rep, is rep.

5.2.3 Additional Constraints

Universe Types impose additional constraints, beyond the standard subtyping

and viewpoint adaptation constraints. In (tnew), the newly created object needs

to be created in a concrete ownership context and therefore needs peer or rep as

ownership qualifiers. In (twrite), the adapted field type cannot be lost, and in (tcall),

the adapted formal parameter type cannot be lost. The function B is defined as

follows:

B(x = new q C) = {q 6= any}
B(y.f = x) = {qy 6= any, qy B qf 6= lost}
B(x = y.mi(z)) = let typeof(m) = qthis, qp → qret in

if impure(m) then {qy 6= any, qy B qp 6= lost}
else {qy B qp 6= lost}

The B sets for (tassign) and (tread) are all empty; these rules do not impose additional

constraints.

The underlined constraints above enforce the owner-as-modifier encapsulation

discipline — they disallow modifications in statically unknown contexts. The receiver

cannot be any in (twrite) or in (tcall) if the method is impure, that is, if the method

might have nonlocal side effects. We use our method purity inference tool, described

in Section 3.7 and in [15]. Note that, in contrast to other formalizations [17], we do

not need to forbid lost as receiver, because our syntax here is in “named form” and

the programmer cannot explicitly write lost.

57

(tnew)

Γ(x) = qx q <: qx
B(x = new q C) = {q 6= any}

Γ ` x = new q C

(tassign)

Γ(x) = qx Γ(y) = qy qy <: qx

Γ ` x = y

(twrite)

Γ(x) = qx typeof (f) = qf Γ(y) = qy
qx <: qy B qf

B(y.f = x) = {qy 6= any, qy B qf 6= lost}
Γ ` y.f = x

(tread)

Γ(x) = qx Γ(y) = qy typeof (f) = qf
qy B qf <: qx

Γ ` x = y.f

(twritethis)

Γ(x) = qx typeof (f) = qf
qx <: qf

Γ ` this.f = x

(treadthis)

Γ(x) = qx typeof (f) = qf
qf <: qx

Γ ` x = this.f

(tcall)

typeof (m) = qthis, qp → qret Γ(x) = qx Γ(y) = qy Γ(z) = qz
qy <: qy B qthis qz <: qy B qp qy B qret <: qx

B(x = y.mi(z)) = {qy B qp 6= lost and impure(m)⇒ qy 6= any}
Γ ` x = y.mi(z)

(tcallthis)

typeof (m) = qthis, qp → qret Γ(x) = qx Γ(y) = qy Γ(z) = qz
qy <: qthis qz <: qp qret <: qx

Γ ` x = this.mi(z)

Figure 5.4: Instantiated Typing Rules for Universe Types. Again, we
show separate typing rules when the receiver is this.

5.3 Instantiated Typing Rules

The instantiated typing rules for Universe Types are shown in Figure 5.4. Note

that the default type for the implicit parameter this is peer. Again, we separate the

typing rules (twrite), (tread), and (tcall) when the receiver is this for readability. The

instantiated typing rules still fit into the framework.

58

5.4 Type Inference

In this section, we first define the initial set mapping S0 and the objective

function oUT to leverage the inference framework for type inference of Universe

Types. Then we discuss the maximal typing for Universe Types.

5.4.1 Initial Mapping

The mapping S0 is initialized as follows. Programmer-annotated variables are

initialized to the singleton set of the provided type. The implicit parameter this

is initialized S(this) = {self}. Library variables are initialized to {peer}. All other

variables are initialized to the maximal set of qualifiers, i.e., S(x) = {rep, peer, any}.

5.4.2 Objective Function

In Universe Types, the objective function is instantiated as

oUT (T) = (|T−1(any)|, |T−1(rep)|, |T−1(peer)|)

The partitioning and ordering is

{any} > {rep} > {peer}

Each qualifier falls in its own partition. This means, informally, that we prefer any

over rep and peer, and rep over peer. More formally, the partitioning and ordering

gives rise to a preference ranking OUT over all qualifiers:

OUT : any > rep > peer

Function oUT gives a natural ranking over the set of valid typings for UT. In fact, the

maximal (i.e., best) typing according to the above ranking, maximizes the number of

allocation sites typed rep , which is a good proxy for a deep UT ownership tree.

5.4.3 Maximal Typing

For Universe Types, the optimality property holds for unannotated programs,

which means that the unique maximal typing maximizes that objective function oUT .

59

The maximal typing provably always type-checks. We show through case analysis that

for each statement s, after the application of the SolveConstraint(c) function

for each constraint c generated from statement s, s type-checks with the maximal

typing, i.e. all constraints generated from s are satisfiable:

(tassign) Consider x = y which generates constraint c : y <: x. We must show that after

the application of SolveConstraint(c), c is satisfiable with max (S ′(x))

and max (S ′(y)).

– If max (S ′(x)) = any, c is satisfiable with any value for max (S ′(y)).

– Suppose that max (S ′(x)) = rep. Thus, any is not in S ′(x), and therefore

any cannot be in S ′(y). max (S ′(y)) cannot be peer; this contradicts the

assumption that max (S ′(x)) = rep (rep would have been removed from

x’s set). Thus, max (S ′(y)) = rep and c is satisfiable.

– Suppose now that max (S ′(x)) = peer. The only possible value for

max (S ′(y)) is peer and c again is satisfiable.

(tnew) is shown exactly the same way.

(tread) Consider x = y.f which generates constraint c: y B f <: x. We must show

that after the application of SolveConstraint(c), c is satisfiable with

max (S ′(x)), max (S ′(f)) and max (S ′(y)).

– If max (S ′(x)) = any this is clearly true.

– Suppose that max (S ′(x)) = rep; then max (S ′(f)) must be peer and

max (S ′(y)) must be rep.

– Finally, when max (S ′(x)) = peer, one can easily see that max (S ′(f))

must be peer and max (S ′(y)) must be peer as well.

(twrite) and (tcall) are analogous; they are omitted for brevity. We have implemented

an independent type checker, which verifies the inferred solution.

60

1 class XStack {
2 any Link top;
3 XStack() {
4 top = null;
5 }
6 void push(any X d1) {
7 rep Link newTop;

8 newTop = new rep Link(); l

9 newTop.init(d1);
10 newTop.next = top;
11 top = newTop;
12 }
13 void main(String[] arg) {
14 rep XStack s;
15 s = new rep XStack(); s

16 any X x = new rep X(); x

17 s.push(x);
18 }
19 }
20 class Link {
21 any Link next;
22 any X data;
23 void init(any X d2) {
24 next = null;
25 data = d2;
26 }
27 }

Figure 5.5: Annotated XStack with Universe Types. The boxed italic
letters denote object allocation sites.

5.5 Inference Example

Figure 5.5 shows a program annotated with Universe types. Variable newTop

at line 7 and the Link object l are typed rep, meaning that the XStack object is the

owner of the Link object. References top (line 2) and next (line 21) are any because

they are never used to modify the object that they refer to. References d1 (line 6)

and d2 (line 23) are any as well, as they are never used to modify the object they

refer to.

Table 5.6 illustrates the computation of the set-based solution for UT for

61

Figure 5.6: Inference of Universe Types for the example in Figure 5.5.

Variable Initial Iteration 1 Iteration 2

top all all all
d1 all any, peer any, peer
newTop all rep, peer rep, peer
new Link() all rep, peer rep, peer
s all rep, peer rep, peer
new XStack() all rep, peer rep, peer
x all all all
new X() all rep, peer rep, peer
next all any, peer any, peer
data all any, peer any, peer
d2 all any, peer any, peer

the example in Figure 5.5. Consider statement s.push(x) at line 17. Initially,

S(s) = S(x) = S(d1) = {any, rep, peer}. In iteration 1, the transfer function for

s.push(x) removes any from S(s) because push is impure. It also removes rep from

S(d1) because q B rep = lost which the type rule for (tcall) forbids. See Table 5.6.

Choosing the maximal type from each set gives us T (s) = rep, T (x) = any, and

T (d1) = any, which type-checks with the rule for (tcall).

CHAPTER 6

Information Flow Systems

In this chapter, we consider information type systems. The general structure of these

systems is as follows. The universe of type qualifiers is

U = {neg, poly, pos}

with subtyping hierarchy

neg <: poly <: pos

Here neg is the “negative” qualifier and pos is the “positive” qualifier. The

goal of the type system is to ensure that there is no flow from a “positive” variable x

to a “negative” variable y. poly is a polymorphic qualifier, which is interpreted as

pos in some contexts, and as neg in other contexts.

The best examples are confidentiality and integrity information flow systems.

A confidentiality system instantiates neg to public and pos to secret. The goal of

the system is to ensure that there is no flow from secret variables (i.e., sources) to

public variables (i.e., sinks), or in other words, to disallow flow from secret variables

to public variables. Intuitively, it is safe to assign a public variable to a secret one,

but it is not safe to assign a secret variable to a public one; hence the direction of

the subtyping relation: public <: secret. A confidentiality system prevents sensitive

data from flowing into untrusted sinks. Other examples of information flow systems

include EnerJ [11], ReIm [15], and more.

In this chapter, we first instantiate the inference framework with SFlow/Integrity

(Section 6.1), for detecting information flow vulnerabilities in Java web applica-

tions [41]. Information flow vulnerabilities are one of the most common security

problems for web applications according to OWASP [42]. Examples of information

flow vulnerabilities include SQL injection, cross-site scripting (XXS), HTTP response

Portions of this chapter previously appeared as: W. Huang et al., “Type-based taint analysis for
Java web application,” in Int. Conf. Fundamental Approaches to Software Engineering, Grenoble,
France, 2014, pp. 140–154.

62

63

splitting, path traversal and command injection [43].

We then instantiate the inference framework with SFlow/Confidentiality (Sec-

tion 6.2), for detecting privacy leaks in Android apps. Android users are often

subjected to privacy leaks, e.g. the apps may obtain and abuse sensitive data such

the phone identifier, without the user’s consent.

6.1 SFlow/Integrity for Java Web Applications

Let us begin with a motivating example shown in Figure 6.1 (adapted from [43]).

1 HttpServletRequest request = ...;
2 Statement stat = ...;
3 String user = request.getParameter(”user”);
4 StringBuffer sb = ...;
5 sb.append(”SELECT ∗ FROM Users WHERE name = ”);
6 sb.append(user);
7 String query = sb.toString();
8 stat.executeQuery(query);

Figure 6.1: SQL injection example.

In this example, the user parameter of the HTTP request obtained through

request.getParameter(“user”) and stored in variable user, which is later appended to

an SQL query string and sent to a database for execution: stat.executeQuery(query).

At a first glance, this code snippet is unremarkable. However, if a malicious end-user

supplies the user parameter with the value of “John OR 1 = 1”, the unauthorized

end-user can gain access to the information of all other users, because the WHERE

clause always evaluates to true.

Static taint analysis detects information flow vulnerabilities. It automatically

detects flow from untrusted sources to security-sensitive sinks. In the example

in Figure 6.1, the return value of HttpServletRequest.getParameter() is a source, and

the parameter p of Statement.executeQuery(String p) is a sink.

Research on static taint analysis for Java web applications has largely focused

on dataflow and points-to-based approaches [43, 44, 45, 46, 47]. One issue with

these approaches is that they usually rely on context-sensitive points-to analysis,

64

which is expensive and non-modular (i.e., it requires a whole program). Arguably

the toughest issue is dealing with reflection, libraries (JDK and third-party), and

frameworks (Struts, Spring, Hibernate, etc.), features notoriously difficult for dataflow

and points-to analysis and yet ubiquitous in Java web applications.

In this section, we instantiate the inference framework with SFlow/Integrity, a

context-sensitive type system for secure information flow, and leverage the inference

framework for detecting information flow violations in Java web applications.

6.1.1 Type Qualifiers and Subtying Relation

There are three basic type qualifiers in SFlow/Integrity: tainted, safe, and poly.

• tainted: A variable x is tainted, if there is flow from a source to x. Sources, e.g.,

the return value of ServletRequest.getParameter(), are annotated as tainted.

• safe: A variable x is safe if there is flow from x to a sensitive sink. Sinks, e.g.,

the parameter p of Statement.executeQuery(String p), are annotated as safe.

• poly: The poly qualifier expresses context sensitivity. poly is interpreted as

tainted in some invocation contexts and as safe in other contexts. This is

analogous to the polyread qualifier in ReIm (see Chapter 3).

SFlow/Integrity disallows flow from tainted sources to safe sinks. Therefore,

the subtyping relation between these type qualifiers is defined as:

safe <: poly <: tainted2

Thus, assigning a safe variable to a tainted one is allowed:

safe int s = ...;

tainted int t = s;

but assigning a tainted variable to a safe one is disallowed:

tainted int t = ...;

safe int s = t; // type error!

2Note that this is the desired subtyping. Unfortunately, this subtyping is not always safe, as we
discuss in detail in Section 6.1.3

65

In the SQL injection example in Figure 6.1, the return value of getParameter()

is annotated as tainted, and the parameter of executeQuery(String p) is annotated as

safe, as they are a source and a sink, respectively. The other variables are tainted as

shown in Figure 6.2. Since it is not allowed to assign the tainted query to the safe

1 HttpServletRequest request = ...;
2 Statement stat = ...;
3 tainted String user = request.getParameter(”user”);
4 tainted StringBuffer sb = ...; // it includes the tainted user

5 sb.append(”SELECT ∗ FROM Users WHERE name = ”);
6 sb.append(user);
7 tainted String query = sb.toString();
8 stat.executeQuery(query); // type error!

Figure 6.2: SQL injection example with SFlow/Integrity typing.

parameter of executeQuery(String p), statement 8 does not type-check, resulting in a

type error. The type error signals an information flow violation.

6.1.2 Viewpoint Adaptation

As in ReIm, viewpoint adaptation in SFlow/Integrity encodes context sensitiv-

ity, which is crucial to the typing precision of SFlow/Integrity.

6.1.2.1 Context Sensitivity

In the context-insensitive typing in Figure 6.2, methods append and toString

must be typed as follows:

tainted StringBuffer append(tainted StringBuffer this, tainted String s) {...}
tainted String toString(tainted StringBuffer this) {...}

Such context-insensitive typing is imprecise, because it types the return value

of toString as tainted. Consider the example in Figure 6.3. query at line 7 is not

tainted by any input, but it is typed tainted because the return value of toString is of

type tainted. Therefore, the program is rejected, even though it is safe.

SFlow/Integrity achieves context sensitivity by making use of a polymorphic

type qualifier, poly, and viewpoint adaptation. The poly qualifiers must be interpreted

66

1 String user = request.getParameter(”user”);
2 StringBuffer sb1 = ...; StringBuffer sb2 = ...;
3 sb1.append(”SELECT ∗ FROM Users WHERE name = ”);
4 sb2.append(”SELECT ∗ FROM Users WHERE name = ”);
5 sb1.append(user);
6 sb2.append(”John”);
7 String query = sb2.toString();
8 stat.executeQuery(query); // type error in context-insensitive typing

Figure 6.3: Context sensitivity example.

according to invocation context. Intuitively, the role of viewpoint adaptation (which

we elaborate upon shortly), is to interpret the poly qualifiers according to the

invocation context. In Figure 6.3, poly is interpreted as tainted at call sb1.append(user),

and as safe at call sb2.append(”John”). As a result, the tainted argument in the call

through sb1 does not propagate to sb2; thus, query at line 7 is typed safe, and the

type error at line 8 is avoided.

6.1.2.2 Viewpoint Adaptation Operation

The viewpoint adaptation operation in SFlow/Integrity is defined as follows:

B tainted = tainted

B safe = safe

q B poly = q

The underscore denotes a “don’t care” value. Qualifiers tainted and safe do not

depend on the viewpoint (context). Qualifier poly depends on the viewpoint; in fact,

it adapts to that viewpoint (context).

67

6.1.2.3 Context of Adaptation

The context of adaptation for SFlow/Integrity is always the receiver at field

access or method call. The function C is defined as follows:

C(y.f = x) = qy

C(x = y.f) = qy

C(x = y.mi(z)) = qy

For example, the type of a poly field f is interpreted in the context of the

receiver y according to the viewpoint adaptation operation. If the receiver y is tainted,

then y.f is tainted. If the receiver y is safe, then y.f is safe.

6.1.3 Composition with Reference Immutability

In order to improve the typing precision, we compose SFlow/Integrity with

reference immutability by using additional constraints.

The reader has likely noticed that subtyping safe <: poly <: tainted is not

always sound. Suppose the field f of class A is poly in the following example:

tainted B tf = ...;
safe A s = ...;
tainted A t = s; // because of safe <: tainted
t.f = tf; // t.f is tainted
safe B sf = s.f; // s.f is safe, unsafe flow!

The program type-checks, but the tainted variable tf flows to safe variable sf. This is

the known problem of subtyping in the presence of mutable references, also known

as the issue with Java’s covariant arrays [48].

The standard solution is to disallow subtyping for references [11, 49]. For

example, EnerJ [11] defines two sets of qualifiers: precise <: poly <: approx for simple

types, and Precise,Poly,Approx for references. While subtyping is allowed for simple

types, it is disallowed for references. This solution demands two sets of qualifiers,

safe <: poly <: tainted for simple types (e.g., int,char), and Safe,Poly,Tainted for

reference types. While subtyping is allowed for simple types, it is disallowed for

reference types.

Unfortunately, disallowing subtyping for reference types leads to imprecision,

68

i.e., the type system rejects valid programs. It amounts to using equality constraints

as opposed to subtyping constraints, and thus, propagating safe and tainted qualifiers

bi-directionally, resulting in often unnecessary propagation. Disallowing subtyping

is in some sense analogous to using unification constraints as opposed to subset

constraints in points-to analysis. It is well-known that Steensgaard’s points-to

analysis [50], which uses unification (i.e., equality) constraints, is substantially less

precise than Andersen’s points-to analysis [51], which uses subset constraints.

To illustrate the problem, consider a micro benchmark from Stanford’s Securibench-

micro from http://suif.stanford.edu/~livshits/work/securibench-micro/ (Re-

trieved on April 29, 2014):

1 protected void doGet(HttpServletRequest req, HttpServletResponse resp) {
2 String name = req.getParameter(FIELD NAME);
3 String str = ”abc”;
4 name = str;
5 PrintWriter writer = resp.getWriter();
6 writer.println(str);
7 }

where the return type of HttpServletRequest.getParameter is tainted, and the parameter

of PrintWriter.println is safe. There is no dangerous flow here, as the tainted name

never flows to println. If we disallowed subtyping for references however, name =

str would have required that name is safe and type-checking would have failed, even

though the program is safe.

We propose a solution using reference immutability, which allows limited

subtyping and improves precision. Subtyping is safe when the reference on the

left-hand-side of the assignment is an immutable reference, that is, the state of

the referenced object, including its transitively reachable state, cannot be mutated

through this reference.

We compose SFlow/Integrity with ReIm (see Chapter 3). We first run type

inference for ReIm and obtain ReIm types for all variables. If the ReIm type of the

left-hand-side of an assignment is readonly, i.e., it is guaranteed that this left-hand-

side is immutable, we use a subtyping constraint in SFlow. Otherwise, i.e., if the

ReIm type is not readonly, we use an equality constraint, by adding an additional

subtyping constraint in the opposite direction in the additional constraints B. The

69

additional constraints B are defined as follows:

B(x = new q C) = {reim(x) 6= readonly⇒ qx <: q}
B(x = y) = {reim(x) 6= readonly⇒ qx <: qy}
B(y.f = x) = {reim(f) 6= readonly⇒ qy B qf <: qx}
B(x = y.f) = {reim(x) 6= readonly⇒ qx <: qy B qf}
B(x = y.mi(z)) = {reim(this) 6= readonly⇒ qy B qthis <: qy,

reim(p) 6= readonly⇒ qy B qp <: qz,

reim(x) 6= readonly⇒ qx <: qy B qret}

where reim is a function that retrieves the inferred ReIm type for a variable and

we have instantiated the context of adaptation to qy. For example, at (tread) x =

y.f, if x is readonly, we use constraint qy B qf <: qx; otherwise, we add the additional

constraint B(x = y.f) = {qx <: qy B qf}. Note that reim(x) 6= readonly is true and qc

is qy. The equality constraint is enforced by two subtyping constraints qy B qf <: qx

and qx <: qy B qf .

6.1.4 Instantiated Typing Rules

The instantiated typing rules for SFlow/Integrity are shown in Figure 6.4.

Let us return to the example in Figure 6.3 and consider the typing rule (tcall). In

the context-sensitive SFlow/Integrity, the polymorphic method append is typed as

follows:

poly StringBuffer append(poly StringBuffer this, poly String s) {...}

Let sb1 be typed tainted. The call at line 5, namely sb1.append(user), accounts for

the following constraint according to (tcall):

user <: sb1 B s ≡ user <: sb1 B poly ≡ user <: sb1

Since user and sb1 are tainted, the call at line 5 type-checks. Now let sb2 be typed

safe. The call at line 6, sb2.append(”John”), accounts for constraint according to

(tcall):

“John” <: sb2 B s ≡ “John” <: sb2 B poly ≡ “John” <: sb2

Since string constant ”John” and sb2 are both safe, this type-checks as well. In the

first context of invocation of append we interpreted poly s as tainted, while in the

70

(tnew)

Γ(x) = qx q <: qx
B(x = new q C) = {reim(x) 6= readonly⇒ qx <: q}

Γ ` x = new q C

(tassign)

Γ(x) = qx Γ(y) = qy qy <: qx
B(x = y) = {reim(x) 6= readonly⇒ qx <: qy}

Γ ` x = y

(twrite)

Γ(x) = qx typeof (f) = qf Γ(y) = qy
qx <: qy B qf

B(y.f = x) = {reim(f) 6= readonly⇒ qy B qf <: qx}
Γ ` y.f = x

(tread)

Γ(x) = qx Γ(y) = qy typeof (f) = qf
qy B qf <: qx

B(x = y.f) = {reim(x) 6= readonly⇒ qx <: qy B qf}
Γ ` x = y.f

(tcall)

typeof (m) = qthis, qp → qret Γ(x) = qx Γ(y) = qy Γ(z) = qz
qy <: qy B qthis qz <: qy B qp qy B qret <: qx

B(x = y.mi(z)) = {reim(this) 6= readonly⇒ qy B qthis <: qy,
reim(p) 6= readonly⇒ qy B qp <: qz,
reim(x) 6= readonly⇒ qx <: qy B qret}

Γ ` x = y.mi(z)

Figure 6.4: Instantiated Typing Rules for SFlow/Integrity.

second context, we interpreted it as safe.

As it is evident from these typing rules, we consider only explicit flows (i.e., data

dependences). To the best of our knowledge, all effective static taint analyses [52,

53, 43, 44, 46, 45, 47] forgo implicit flows.

71

6.1.5 Type Inference

In this section, we first define the initial set mapping and the objective function

for SFlow/Integrity. Unfortunately, the optimality property does not hold for

SFlow/Integrity, which means the maximal typing extracted from the set-based

solution does not type-check. Therefore, we extend the set-based solver with the

computation of the method summary constraints to further remove infeasible qualifiers

from the set-based mapping and help arrive at a valid typing.

6.1.5.1 Initial Mapping

The mapping S0 is initialized as follows. Programmer-annotated variables are

initialized to the singleton set of the provided type. In SFlow/Integrity, programmers

annotate the sources and the sinks as tainted and safe, respectively. For Java web

applications, sources and sinks are usually from Java libraries. Therefore, once

the programmers have inserted annotations into libraries, these annotated libraries

can be reused in the inference for other web applications. Fields f are initialized

to S(f) = {tainted, poly}. This is because a tainted object should not contain safe

information in its fields — it is not clear what the meaning of such an object

would be. All other variables are initialized to the maximal set of qualifiers, i.e.

S(x) = {tainted, poly, safe}.

6.1.5.2 Objective Function

In SFlow/Integrity, the objective function is instantiated as

oSFlow/Integrity(T) = (|T−1(tainted)|, |T−1(poly)|, |T−1(safe)|)

The partitioning and ordering is

{tainted} > {poly} > {safe}

Each qualifier falls in its own partition. This means that we prefer tainted over poly

and safe, and poly over safe. The maximal typing according to the above ranking,

maximizes the number of variables typed tainted.

72

1 class A {
2 String f;
3 String get()

4 {return this.f;} this B f <: ret
5 }
6 A y = ...;
7 PrintWriter writer = ...;

8 String x = y.get(); y <: y B this y B ret <: x

9 writer.print(x); x <: writer B safe

Figure 6.5: An example illustrating the computation of the method sum-
mary constraints. The frame box beside each statement shows the corre-
sponding constraints the statement generates.

6.1.5.3 Method Summary Constraints

Unfortunately, the optimality property does not always hold in SFlow/Integrity.

Consider the example in Figure 6.5. The inference solves the generated constraints

and yields the set-based solution S: S(x) = {safe}, S(y) = {tainted, poly, safe},
S(this) = {poly, safe}, S(ret) = {poly, safe}, and S(f) = {poly}. If we pick the

maximal qualifier from each set, the maximal typing is

Γ(x) = safe

Γ(y) = tainted

Γ(this) = poly

Γ(ret) = poly

Γ(f) = poly

This maximal typing fails to type-check because the constraint y B ret <: x is not

satisfied:

y B ret ≡ tainted B poly = tainted

and tainted is not a subtype of Γ(x) = safe.

The set-based solver removes many infeasible qualifiers and in many cases, it

discovers type errors. In our experience, the set-based solver, which is quadratic in

the worst case and linear in practice, discovers the vast majority of type errors, and

73

therefore it is useful on its own. Unfortunately, when the set-based solver terminates

without type errors, it is unclear if a valid typing exists or not, and therefore, there

is no guarantee of safety. The question is, how do we extract a valid typing, or

conversely, show that a valid typing does not exist?

The idea is to compute what we call method summary constraints, which

remove additional qualifiers from the set-based solution. These constraints reflect

the relations (subtyping or equality) between formal parameters (including this) and

return values (ret). Such references are usually “connected” indirectly, e.g. this

and ret can be connected through two constraints this <: x and x <: ret. Note that

intuitively, the subtyping relation reflects flow: there is flow from this to x, there is

flow from x to ret, and due to transitivity, there is flow from this to ret.

Once we have computed the relations between formal parameters and return

values of a method m, we connect the actual arguments to the left hand sides of the

call assignment at calls to m. The computation of method summary constraints is

presented in Figure 6.6.

Let us return to the example in Figure 6.5. Case 2 in Figure 6.6 creates

this <: ret. This entails y B this <: y B ret since viewpoint adaptation preserves

subtyping [54]. Case 3 combines this with constraints y <: y B this and y B ret <: x,

yielding a new constraint y <: x. Because tainted and poly are not subtypes of

safe, SolveConstraint removes them from S(y), and S(y) becomes {safe}. The

set-based solution is updated to S(x) = {safe}, S(y) = {safe}, S(this) = {poly, safe},
S(ret) = {poly, safe}, and S(f) = {poly}. We obtain a valid maximal typing:

Γ(x) = safe

Γ(y) = safe

Γ(this) = poly

Γ(ret) = poly

Γ(f) = poly

In our experiments (see Section 7.3), the maximal typing always type-checks,

except for 2 constraints in one benchmark, jugjobs. It is a theorem that even if it

does not type-check, the program is still safe, i.e., there is no flow from sources to

74

1: procedure RunSolver
2: repeat
3: for each c in C do
4: SolveConstraint(c)
5: if c is qx <: qy B qf and S(f) is {poly} then . Case 1
6: Add qx <: qy into C
7: else if c is qx B qf <: qy and S(f) is {poly} then . Case 2
8: Add qx <: qy into C
9: else if c is qx <: qy then . Case 3

10: for each qy <: qz in C do add qx <: qz to C end for
11: for each qw <: qx in C do add qw <: qy to C end for
12: for each qw <: qa B qx and qa B qy <: qz in C do . Case 4
13: Add qw <: qz to C
14: end for
15: end if
16: end for
17: until S remains unchanged
18: end procedure

Figure 6.6: Computation of method summary constraints. C is the set
of constraints, it is initialized to the set of constraints for program state-
ments (recall that each equality constraint is written as two subtyping
constraints). S is initialized to the result of the set-based solver. Cases 1
and 2 add qx <: qy into C because qyBpoly always yields qy. Case 3 adds con-
straints due to transitivity; this case discovers constraints from formals
to return values. Case 4 adds constraints between actual(s) and left-hand-
side(s) at calls: if there are constraints qw <: qa B qx (flow from actual to
formal) and qaBqy <: qz (flow from return value to left-hand-side), and also
qx <: qy (flow from formal to return value, usually discovered by Case 3),
Case 4 adds qw <: qz. Note that line 4 calls SolveConstraint(c): the solver
infers new constraints, which remove additional infeasible qualifiers from
S. This process repeats until S stays unchanged.

sinks. We confirmed this for the 2 constraints in jugjobs.

Complexity After extending the set-based solver with method summary con-

straints, the inference in Figure 6.6 reaches the fixpoint (when S stays unchanged) in

O(n3) time, where n is the size of the program. There are at most O(3n) iterations

of the outer loop (line 2), because in each iteration at least one of O(n) references is

updated to refer to a smaller set of qualifiers, and each set has at most 3 qualifiers.

75

1 void doGet(A this, ServletRequest request, ServletResponse response) {
2 StringBuffer buf = ...;

3 this.foo(buf,buf,request,response); buf = thisdoGet B b1
�� ��S(buf) = {tainted}

4 } buf <: thisdoGet B b2
�� ��S(b2) = {tainted, poly}

5 void foo(A this, StringBuffer b1, StringBuffer b2,
6 ServletRequest req, ServletResponse resp) {
7 String url = req.getParameter(”url”); reqB tainted <: url

�� ��S(url) = {tainted}

8 b1.append(url); url <: b1B poly
�� ��S(b1) = {tainted}

9 String str = b2.toString(); b2B poly <: str
�� ��S(str) = {tainted, poly}

10 PrintWriter writer = resp.getWriter();

11 writer.print(str); str <: writer B safe
�� ��TYPE ERROR!

12 }

Figure 6.7: Aliasing5 example from Stanford SecuriBench Micro. The
frame box beside each statement shows the corresponding constraints
the statement generates. The oval boxes show propagation during the
set-based solution. The constraint at 7 forces url to be tainted, and the
constraint at 8 forces b1 to be tainted. The constraint at 3 forces buf to be
tainted and the one at 4 forces b2 to be tainted or poly (i.e., the set-based
solver removes safe from b2’s set). The constraint at 9 then forces str to
be tainted or poly. There is a TYPE ERROR at writer.print(str).

The inner loop (line 3) iterates over at most O(n2) constraints, because in the

worst case every two references can form a constraint, resulting in O(n2) constraints.

Altogether, we have worst-case complexity of O(n3). Although at first glance lines

10-13 (Cases 3-4) appear to contribute O(n) ∗O(n2) ∗O(3n), a closer look reveals

they contribute only O(n) ∗ O(n2), or O(n3) (this is because lines 10-13 run only

when a new constraint qx <: qy is discovered, and there are at most O(n2) such new

constraints).

6.1.6 Inference Example

To demonstrate the power of the type system and inference analysis, we

elaborate on two examples that have posed challenges for previous taint analyses [43,

46].

The Aliasing5 example from Ben Livshits’ Stanford SecuriBench Micro bench-

76

marks3 in Figure 6.7 illustrates the handling of aliasing. foo is safe when b1 and

b2 refer to distinct StringBuffer objects. However, when b1 and b2 are aliased, foo

creates dangerous flow from source req.getParameter to a sink, the parameter of

PrintWriter.print. Note that the constraint at line 3 is an equality constraint: b1

is mutated at b1.append(url), ReIm infers b1 as mutable, and hence the equality

constraint. The set-based solver reports a type error at statement 11; the constraint

at 11 is unsatisfiable as it requires that str is safe, which contradicts the finding that

str is {tainted, poly}.
The second example, shown in Figure 6.8 illustrates the handling of context

sensitivity. There are two instances of DataSource, one that holds a tainted string

in its f field, and another one that holds a safe string. The code is safe because

s2, which flows to the sensitive sink, is read from the “safe” DataSource object. A

context-insensitive taint analysis would merge the flows through setUrl and getUrl

across the two different instances of DataSource, and report a spurious warning.

Figure 6.8 illustrates our solution. The inferred typing types class DataSource

as polymorphic. The poly types are instantiated to tainted for object ds1 and to safe

for object ds2.

As illustrated, the analysis handles naturally these difficult idioms. The

handling of DataSource can be interpreted as object sensitivity [55]: essentially, the

analysis processes polymorphic setUrl and getUrl separately for object contexts ds1

and ds2, just as standard object-sensitive analysis does.

6.1.7 Web Application-Specific Features

Reflection, libraries (standard and third-party) and frameworks (e.g., Struts,

Spring, Hibernate) are the bane of static taint analysis. Yet they are ubiquitous

in Java web applications. In addition, mapping data structures such as Propterties,

HashMap, etc. are key to connecting flows between the front-end (e.g. JSP pages)

and the back-end (e.g. Servlets) in Java web applications. The type-based approach

we espouse, handles these features safely and effortlessly.

3http://suif.stanford.edu/~livshits/work/securibench-micro/ (Retrieved on April 29,
2014).

77

1 class DataSource {
2 String f;

3 void setUrl(String url) {
4 this.f = url;

5 }
6 String getUrl() {
7 return this.f;

8 }
9 }

10 String tUrl = req.getParameter(..);

11 DataSource ds1 = new DataSource();

12 ds1.setUrl(tUrl);

14 String sUrl = ”http://localhost/”;

15 DataSource ds2 = new DataSource();

16 ds2.setUrl(sUrl);

18 String s1 = ds1.getUrl();

21 String s2 = ds2.getUrl();

24 writer.println(s2);

Constraint Set-based Solution

�� ��S(thissetUrl) = {tainted,poly}
url <: thissetUrl B f

�� ��S(url) = {tainted,poly}

url <: thissetUrl �� ��S(thisgetUrl) = {tainted,poly}
thisgetUrl B f <: retgetUrl

�� ��S(f) = {poly}
thisgetUrl <: retgetUrl

�� ��S(retgetUrl) = {poly, safe}

reqB tainted <: tUrl
�� ��S(tUrl) = {tainted}

tUrl <: ds1B url

ds1 = ds1B thissetUrl
�� ��S(ds1) = {tainted, poly, safe}�� ��S(sUrl) = {tainted, poly, safe}

sUrl <: ds2B url

ds2 = ds2B thissetUrl
�� ��S(ds2) = {tainted, poly, safe}

ds1 <: ds1B thisgetUrl

ds1B retgetUrl <: s1
�� ��S(s1) = {tainted, poly, safe}

ds1 <: s1

ds2 <: ds2B thisgetUrl

ds2B retgetUrl <: s2

ds2 <: s2

s2 <: writer B safe
�� ��S(s2) = {safe}

Figure 6.8: The DataSource example due to Ben Livshits [43]. The frame
box beside each statement shows the generated constraints correspond-
ingly. The bold red frame boxes show the constraints generated by the
algorithm in Figure 6.6. The oval boxes show the set-based solution,
where overstruck qualifiers are eliminated by the the algorithm in Fig-
ure 6.6. The bold qualifiers are the final maximal typing. It type-checks.

6.1.7.1 Reflective Object Creation

Use of reflective object creation in web applications is widespread. Ignoring

it, as some static analyses do, renders a static analysis useless. Consider the use of

newInstance():

78

X x = (X) Class.forName(”someInput”).newInstance();
x.f = a; // a is tainted, comes from source

y = x;
b = y.f; // b is safe, flows to sink

If a points-to-based static analysis fails to handle newInstance(), the points-to sets of

x and y will be empty, and the flow from a to b will be missed. On the other hand,

handling of reflective object creation is difficult, expensive and often unsound.

We handle reflective object creation with newInstance() safely and effortlessly.

The key is that SFlow tracks dependences between variables through subtyping,

which obviates the need to abstract heap objects. It can be shown that, roughly

speaking, if x flows to y, then x <: y holds. In the above example, x <: y holds and

subsequently a <: b holds. The type inference reports a type error caused by the

flow from tainted a to safe b.

6.1.7.2 Libraries

Our inference analysis is modular. Thus, it can analyze any given set of classes

L. If there is an unknown callee in L, e.g. a library method whose source code is

unavailable, the analysis assumes typing poly, poly→ poly for the callee. This typing

conservatively propagates tainted arguments to the receiver and left-hand-side of the

call assignment. Similarly, it propagates a safe left-hand-side to the receiver and

arguments at the call. E.g., String.toUpperCase() is typed as

poly String toUpperCase(poly String this)

At call s2 = s1.toUpperCase() we have constraint s1 B poly <: s2 or equivalently

s1 <: s2. Thus, a tainted s1 propagates to s2, and a safe s2 propagates to s1.

We apply the poly, poly→ poly typing to all methods in the standard library,

third-party libraries (e.g., apache-tomcat, xalan) and frameworks, with several

exceptions described in the next section.

6.1.7.3 Frameworks

Most Java web applications are built on top of one or more frameworks such

as Struts, Spring, Hibernate, and etc. The problem with these frameworks is

twofold. First, they contain “hidden” sources and sinks, i.e., sources and sinks

79

deep in framework code that affect the public API. For example, Hibernate (version

2.1) contains a public method Session.find(String s), where s flows to query at sink

prepareStatement(query). This happens deep in the code of Hibernate. We run a

version of our inference analysis and “lift” such hidden sources and sinks to the return

values and parameters of the public methods they affect. In the above example,

Session.find() is typed as

poly List find(poly Session this, safe String s)

Callers to find() in application code must handle the argument of find() as safe,

otherwise it may lead to an SQL injection vulnerability as described by Livshits and

Lam [43]. To the best of our knowledge, no other taint analysis attempts to “lift”

these “hidden” sources and sinks in the frameworks.

Second, these frameworks rely heavily on reflection and callbacks, which must

be handled in the analysis. These are notorious issues for dataflow and points-to

based analysis, which usually relies on reachability analysis. Our type-based analysis

handles these features with the method overriding constraints.

As an illustrating example, Struts defines framework classes ActionForm and

Action and method Action.execute(ActionForm form). The application built on top

of Struts defines numerous xxxForm classes extending ActionForm, and numerous

xxxAction classes extending Action. Framework code performs the following (roughly):

1. Action a = (Action) Class.forName(”inputClass”).newInstance(); a instantiates

one user-defined xxxAction class.

2. ActionForm f = (ActionForm) Class.forName(”inputForm”).newInstance(); simi-

larly, this instantiates one user-defined xxxForm class.

3. Framework populates the xxxForm object with tainted values from sources.

4. Framework calls a.execute(f), a callback to user-defined xxxAction.execute.

In our type-based analysis Action.execute() is typed as

execute(poly Action this, tainted ActionForm form)

80

1 class BlojsomServlet {
2 public static final String AUTHOR = ”BLOJSOM AUTHOR”;
3 public void doGet(HttpServletRequest req, HttpServletResponse resp) {
4 String inAuthor = req.getParameter(‘‘author’’); // tainted source

5 req.setAttribute(BLOJSOM AUTHOR, inAuthor);
6 }
7 }
8 class html dcomments jsp {
9 public void jspService(HttpServletRequest req, HttpServletResponse resp) {

10 String outAuthor = (String) req.getAttribute(BlojsomServlet.AUTHOR);
11 PrintWriter out = ...;
12 out.print(outAuthor); // safe sink

13 }
14 }

Figure 6.9: Imprecision caused by mapping data structures.

The method overriding constraints (recall Section 2.2.3) propagate tainted to the

form parameter of each execute method in user-defined subclasses. As a result, all

values retrieved through get methods from forms in user code are tainted, which

accurately reflects that the xxxForm object is populated with tainted values.

6.1.7.4 Mapping Data Structures

We special-case global mapping data structures Properties from the java.util

package, and ServletRequest and HttpSession from the javax.servlet package. In

order to illustrate the problem, consider the example in Figure 6.9 refactored from

benchmark blojsom. At line 6, the tainted inAuthor is put into the mapping of req.

Then it is retrieved at line 13 through req.getAttribute() and printed to the client

page. The parameter of PrintWriter.print() is a safe sink according to [43]. Therefore,

there is unsafe flow from req.getParameter() to out.print().

If outAuthor = req.getAttribute(...) were handled according to the typing rules

in Figure 6.4, the safe outAuthor would cause req to be safe, and safe would propagate

to all calls on receiver req, not only to the call req.setAttribute(...,inAuthor).

Therefore, we special-case set∗ and get∗ methods for such mapping data

structures, similarly to Sridharan et al. [45]. If the key of the set∗ method call set(key,

81

value) is a constant, the inference simply creates the equality constraint key = value.

Similarly, if the key of get∗ method call x = get(key) is a constant, the set-based

solver creates constraint x = key. For the example in Figure 6.9, the set-based solver

enforces BlojsomServlet.BLOJSOM AUTHOR = inAuthor at line 5 and outAuthor =

BlojsomServlet.BLOJSOM AUTHOR at line 10. Thus, inAuthor and outAuthor are

connected and outAuthor is typed as tainted. The unsafe information flow is detected

because there is a type error when passing tainted outAuthor to the safe parameter of

out.print().

6.2 SFlow/Confidentiality for Android apps

In this section, we consider the confidentiality system SFlow/Confidentiality

for detecting privacy leaks in Android apps.

Android is the most popular platform on mobile devices. As of November 2013,

Android has reached 81% share of the global smartphone market [56]. Android’s

success is partly due to the enormous number of applications available at the Google

Play Store, as well as other third-party app stores. In the meantime, Android

users are often subjected to malicious behaviors of the apps they have installed.

Sensitive data such as phone identifier, location information, SMS messages, etc.

can be obtained and abused by malicious apps. The Mobile Thread Report from

F-Secure shows that in the third quarter of 2013, 97% of the mobile malware targeted

Android [57].

Android’s coarse-grained permission-based security model is not sufficient

to regulate access to sensitive data. An app declares permissions such as AC-

CESS FINE LOCATION and INTERNET statically, and the user grants such per-

missions at installation time. However, the app can abuse those permissions, e.g. the

app can send the location information to an untrusted targeted advertising service.

Android lacks the fine-grained permission control that would allow to specify where

sensitive data can flow.

Many researchers have tackled taint analysis for Android. Dynamic analyses

such as Google Bouncer [58], TaintDroid [59], DroidScope [60], CopperDroid [61],

and Aurasium [62] instrument the app bytecode and/or use customized execution

82

environment to monitor the transition of sensitive data. Unfortunately, dynamic

analysis slows execution and typically lacks code coverage.

Research on static taint analysis for Android has largely focused on dataflow

and points-to-based approaches [47, 63, 64, 65, 66]. One issue with such approaches

is that they usually rely on context-sensitive points-to analysis, which is expensive

and typically requires a whole program analysis. Unfortunately, Android apps are

not whole programs. They are “open” in the sense that they have no main method;

they run within the Android framework by implementing callback methods which are

called by the framework, corresponding to different events or states of the lifecycle.

Therefore, without precisely modeling the app’s lifecycle and accurately discovering

the app’s entry points, such static approaches would be unsound and ineffective in

practice.

This section presents the dual confidentiality system SFlow/Confidentiality and

its application for detecting privacy leaks in Android apps. The SFlow/Confidentiality

type system is similar to SFlow/Integrity, except that SFlow/Confidentiality has

different names for type qualifiers and uses a different context of adaptation to

improve typing precision.

6.2.1 Motivating Example

The example shown in Figure 6.10 is refactored from one of our benchmarks,

“Backgrounds HD Wallpapers” version 2.0.1 from the Google Play Store. The

WallpapersMain activity first obtains the device identifier by calling the getDeviceId

method and stores it into a field deviceId when it is created (onCreate). Then it

appends the deviceId into a search URL url, which is sent to a content server in

the navigate method. Finally, the navigate method is called in callback method

onActivityResult, resulting in a privacy leak.

This example poses several challenges to traditional points-to-based dataflow

analyses. First, unlike Java programs, Android apps do not have a single entry point.

Instead, each callback method is a potential entry point as it could be called by

the Android framework. In WallpapersMain, both onCreate and onActivityResult are

callback methods that are implicitly called by the Android framework. An Android

83

1 public class WallpapersMain extends Activity {
2 private String BASE URL, deviceId;
3 private int pageNum, catId;
4 private DisplayMetrics metrics;
5 private WebView browser1;
6 protected void onCreate(Bundle b) {
7 start();
8 }
9 protected void onActivityResult(int rq, int rs, Intent i) {

10 navigate();
11 }
12 private void start() {
13 BASE URL = ”getWallpapers Android2/”;
14 TelephonyManager mgr =
15 (TelephonyManager) this.getSystemService(”phone”);
16 deviceId = mgr.getDeviceId(); // source

17 }
18 private void navigate() {
19 String str = BASE URL + pageNum + ”/” + catId + ”/” + deviceId + ”/”

+ metrics.widthPixels + ”/” + metrics.heightPixels;
20 browser1.loadUrl(str); // sink

21 }
22 }

Figure 6.10: WallpapersMain leaks the phone identifier (the source at line
16) to a content server (the sink at line 20) in a URL.

app consists of a number of components, each of which can be instantiated and run

within the Android framework.

The Android app defines its own behaviors at different states of the component

lifecyle by overriding pre-defined callback methods. Multiple entry points challenge

points-to-based static analyses, which usually require whole program analysis and

precise call graphs. Second, control flow is interrupted by callbacks from Android.

In the WallpapersMain example, control flow from onCreate to onActivityResult must

be captured in order to detect the leak.

6.2.2 Type Qualifiers and Subtyping Relation

SFlow/Confidentiality is the dual confidentiality system of SFlow/Integrity

and there are three type qualifiers in SFlow/Confidentiality: secret, public, and poly.

84

• secret: A variable x is secret, if there is flow from a sensitive source to x. In

the WallpapersMain example, the return value of TelephonyManager.getDeviceId

is typed as secret. This is is the positive qualifier, equivalent to tainted in

SFlow/Integrity.

• public: A variable x is public if there is flow from x to an untrusted sink. For

example, the parameter url of WebView.loadUrl(String url) is a public sink. This

is the negative qualifier, equivalent to safe in SFlow/Integrity.

• poly: The poly qualifier expresses context sensitivity. poly is interpreted as

secret in some contexts and as public in other contexts. This is the same as

poly in SFlow/Integrity.

The subtyping relation is

public <: poly <: secret

Similarly to SFlow/Integrity, this is the desired subtyping relation. SFlow/Confi-

dentiality also composes with ReIm to improve the typing precision. It is allowed to

assign a public variable to a secret one:

public String s = ...;
secret String t = s;

However, it is not allowed to assign a secret variable to a public one:

secret String t = ...;
public String s = t; // type error!

In the WallpapersMain example, the return value of getDeviceId is typed as

secret and the url parameter of loadUrl is typed as public, as they are a source and a

sink, respectively. The field deviceId is typed as secret and so is the local variable str

since it contains the value of deviceId. Because it is not allowed to assign a secret str

to the public parameter url of loadUrl, Statement 20 does not type-check, resulting in

a type error. This type error indicates a privacy leak.

Once the sources and sinks are given, type qualifiers are inferred automatically

using the inference framework. If there is a valid typing, then there is no flow from a

85

source to a sink. Otherwise, i.e., if there is no valid typing, the tool reports type

errors, signaling potential privacy leaks.

6.2.3 Viewpoint Adaptation

The viewpoint adaptation function in SFlow/Confidentiality is defined as

follows:

B secret = secret

B public = public

q B poly = q

For a field access, SFlow/Confidentiality uses the receiver as the context of

adaptation, which is the same as SFlow/Integrity:

C(y.f = x) = qy

C(x = y.f) = qy

For a method call, SFlow/Confidentiality improves the typing precision by

using the callsite qi rather than the receiver as the context of adaptation.

C(x = y.mi(z)) = qi

This improvement allows SFlow/Confidentiality to accept more valid programs, as

we will elaborate shortly in Section 6.2.5.

6.2.4 Additional Constraints

SFlow/Confidentiality also composes with ReIm and B is defined as follows:

B(x = new q C) = {reim(x) 6= readonly⇒ qx <: q}
B(x = y) = {reim(x) 6= readonly⇒ qx <: qy}
B(y.f = x) = {reim(f) 6= readonly⇒ qy B qf <: qx}
B(x = y.f) = {reim(x) 6= readonly⇒ qx <: qy B qf}
B(x = y.mi(z)) = {reim(this) 6= readonly⇒ qi B qthis <: qy,

reim(p) 6= readonly⇒ qi B qp <: qz,

reim(x) 6= readonly⇒ qx <: qi B qret}

86

(tnew)

Γ(x) = qx q <: qx
B(x = new q C) = {reim(x) 6= readonly⇒ qx <: q}

Γ ` x = new q C

(tassign)

Γ(x) = qx Γ(y) = qy qy <: qx
B(x = y) = {reim(x) 6= readonly⇒ qx <: qy}

Γ ` x = y

(twrite)

Γ(x) = qx typeof (f) = qf Γ(y) = qy
qx <: qy B qf

B(y.f = x) = {reim(f) 6= readonly⇒ qy B qf <: qx}
Γ ` y.f = x

(tread)

Γ(x) = qx Γ(y) = qy typeof (f) = qf
qy B qf <: qx

B(x = y.f) = {reim(x) 6= readonly⇒ qx <: qy B qf}
Γ ` x = y.f

(tcall)

typeof (m) = qthis, qp → qret Γ(x) = qx Γ(y) = qy Γ(z) = qz
qy <: qi B qthis qz <: qi B qp qi B qret <: qx

B(x = y.mi(z)) = {reim(this) 6= readonly⇒ qi B qthis <: qy,
reim(p) 6= readonly⇒ qi B qp <: qz,
reim(x) 6= readonly⇒ qx <: qi B qret}

Γ ` x = y.mi(z)

Figure 6.11: Instantiated Typing Rules for SFlow/Confidentiality.

where reim is a function that retrieves the inferred ReIm type for a variable.

6.2.5 Instantiated Typing Rules

The Instantiated typing rules are shown in Figure 6.11.

Note that SFlow/Confidentiality improves the typing precision by using the

callsite qi rather than the receiver as the context of adaptation. Consider the example

in Figure 6.12, where method id is typed as follows:

87

1 class Util {
2 poly String id(secret Util this, poly String p) {
3 return p;
4 }
5 }
6 ...
7 Util y = new Util();
8 secret String src = ...;
9 public String sink = ...;

10 secret String srcId = y.id(src);
11 public String sinkId = y.id(sink);

Figure 6.12: id example.

poly String id(secret Util this, poly String p)

which enables context sensitivity because id can take as input a secret String as well

as a public one.

If we used the receiver y as the adaptation context, (tcall) generates the following

constraints at callsite 10:

y <: y B secret src <: y B poly y B poly <: srcId

Because src = secret, y must be secret. However, y being secret does not satisfy the

constraints at callsite 11:

y <: y B secret sink <: y B poly y B poly <: sinkId

where both sink and sinkId are public. This is because yBpoly = secret is not a subtype

of sinkId = public. As a result, this program would be rejected by SFlow/Integrity.

In contrast, SFlow/Integrity overcomes this imprecision. The callsite context

qi is a value that is not important, except that it should exist. qi can be any of

{secret, poly, public}. In Figure 6.12, SFlow/Integrity creates the following constraints

at callsite 10:

y <: q10 B secret src <: q10 B poly q10 B poly <: secret

88

q10 = secret satisfies the above constraints. SFlow/Integrity creates the following

constraints at callsite 11:

y <: q11 B secret sink <: q11 B poly q11 B poly <: public

q11 = public satisfies the above constraints. Therefore, SFlow/Confidentiality accepts

this program and improves the typing precision by using the callsite as the context

of adaptation.

6.2.6 Inference Example

The type inference of SFlow/Confidentiality is similar to SFlow/Integrity. We

refer users to the discussion of the type inference for SFlow/Integrity in Section 6.1.5.

We present an inference example for SFlow/Confidentiality instead.

Let us consider the FieldSensitivity2 example refactored from DroidBench [47]

in Figure 6.13. The return of TelephonyManager.getSimSerialNumber (line 10) is a

source and the parameter msg of SmsManager.sendTextMessage (line 16) is a sink.

The serial number of the SIM card is obtained and stored into a Data object. Later,

it is retrieved from the Data object and sent out through an SMS message without

user consent. We illustrate the inference in Figure 6.13 as follows. 16 forces sg

to be {public}, then 14 forces retget to be {poly, public} and then 3 forces thisget

to be {poly, public} and secret to be {poly}. 10 forces sim to be {secret}, which

in turn forces the parameters p and thisset to be {secret, poly}. There are no type

errors in the initial set-based solution. The red frame box in the fourth column

(New constraints) shows the computed method summary constraints. Since field

secret is poly, constraint thisget B secret <: retget leads to method summary constraint

thisget <: retget, which in turn leads to dt <: sg due to the call at 14. Similarly,

p <: thisset B secret leads to p <: thisset, which in turn leads to sim <: dt due to the

call at 11. Since sim is {secret} and sg is {public}, these constraints cause a TYPE

ERROR, detecting the leak.

89

1
pu

bl
ic

cl
as

s
D

at
a
{

2
S

tr
in

g
se

cr
et

;

3
S

tr
in

g
ge

t(
D

at
a

th
is

)
{r

et
ur

n
th

is
.s

ec
re

t;
}

4
vo

id
se

t(
D

at
a

th
is

,
S

tr
in

g
p)
{t

hi
s.

se
cr

et
=

p;
}

5
}

6
pu

bl
ic

cl
as

s
F

ie
ld

S
en

si
ti

vi
ty

2
ex

te
nd

s
A

ct
iv

it
y
{

7
pr

ot
ec

te
d

vo
id

on
C

re
at

e(
B

un
dl

e
b)
{

8
D

at
a

dt
=

ne
w

D
at

a(
);

9
T

el
ep

ho
ny

M
an

ag
er

tm
=

(T
el

ep
ho

ny
M

an
ag

er
)

ge
tS

ys
te

m
S

er
vi

ce
(”

ph
on

e”
);

10
S

tr
in

g
si

m
=

tm
.g

et
S

im
S

er
ia

lN
um

b
er

()
;

11
dt

.s
et

(s
im

);
12 13

S
m

sM
an

ag
er

sm
s

=
S

m
sM

an
ag

er
.g

et
D

ef
au

lt
()

;
14

S
tr

in
g

sg
=

dt
.g

et
()

;
15 16

sm
s.

se
nd

T
ex

tM
es

sa
ge

(”
+

12
3”

,n
ul

l,s
g,

nu
ll,

nu
ll)

;
17

}
18
}

C
o
n
st
ra

in
ts

S
e
t-
b
a
se
d

so
lu
ti
o
n

N
e
w

c
o
n
st
ra

in
ts

� �
� �

S
(s
ec
re
t)

=
{p

ol
y}

th
is
g
et
B
se
cr
et

<
:
re
t g

et

� �
� �

S
(r
et

g
et

)
=
{p

ol
y,
p
u
b
lic
}

th
is
g
et
<

:
re
t g

et

p
<

:
th
is
se
t
B

se
cr
et

� �
� �

S
(p

)
=
{s
ec
re
t,
p
ol
y}

p
<

:
th
is
se
cr
et

� �
� �

S
(d
t)

=
{s
ec
re
t,
p
ol
y,
p
u
b
lic
}

q1
0
B

se
cr
et

<
:
si
m

� �
� �

S
(s
im

)
=
{s
ec
re
t}

si
m

<
:
q1

1
B
p

si
m

<
:
d
t

d
t

=
q1

1
B
th
is
se
t

� �
� �

S
(t
h
is
se
t)

=
{s
ec
re
t,
p
ol
y}

d
t
<

:
q1

4
B

th
is
g
et

� �
� �

S
(t
h
is
g
et

)
=
{p

ol
y,
p
u
b
lic
}

q1
4
B

re
t g

et
<

:
sg

d
t
<

:
sg

� �
� �

T
Y
P
E
E
R
R
O
R
!

sg
<

:
q1

6
B
p
u
b
lic

� �
� �

S
(s
g
)

=
{p

u
b
lic
}

F
ig

u
re

6
.1

3
:

F
ie

ld
S

en
si

ti
vi

ty
2

e
x
a
m

p
le

re
fa

ct
o
re

d
fr

o
m

D
ro

id
B

e
n
ch

.
T

h
e

fr
a
m

e
b

o
x

b
e
si

d
e

e
a
ch

st
a
te

m
e
n
t

sh
o
w

s
th

e
co

rr
e
sp

o
n
d
in

g
co

n
st

ra
in

ts
th

e
st

a
te

m
e
n
t

g
e
n
e
ra

te
s.

W
e

o
m

it
te

d
u
n
in

te
re

st
in

g
co

n
st

ra
in

ts
.

T
h

e
o
v
a
l

b
o
x
e
s

sh
o
w

p
ro

p
a
g
a
ti

o
n

d
u
ri

n
g

th
e

se
t-

b
a
se

d
so

lu
ti

o
n
.

90

6.2.7 Android-Specific Features

In this section, we discuss our techniques for handling Android-specific fea-

tures, including libraries, multiple entry points and callbacks, and inter-component

communication.

6.2.7.1 Libraries

Libraries are ubiquitous in Android apps. An effective analysis should keep

track of flows through library method calls. Unfortunately, analyzing the Android

library is a significant challenge. Computing public summaries for the Android

library is an open problem (to the best of our knowledge). Analyzing library calls

on-demand, i.e., using some form of reachability analysis faces challenges due to

callbacks and reflection, which are pervasive in Android. The most popular solution

appears to be manual summaries for common library methods [65, 47], which is

clearly unsatisfying.

The inference inserts annotations (type qualifiers) into the Android library

for sources (e.g. location access, phone state, contacts) and for sinks (e.g., internet

access, storage access) by using the Stub Generation Tool and the Annotation

File Utility from the Checker Framework [18]. The inference uses conservative

defaults for all unknown library methods. For any unanalyzed library method m,

it assumes the typing poly, poly → poly. This typing conservatively propagates a

secret receiver/argument to the left-hand side of the call assignment. Similarly, it

propagates a public left-hand-side to the receiver/arguments. Consider the following

code snippet:

1 public class MyListener implements LocationListener {
2 @Override
3 public void onLocationChanged(Location loc){//source
4 double lat = loc.getLatitude();
5 Log.d(”History”, ”Latitude: ” + lat); // sink

6 }
7 }

LocationListener.onLocationChanged(secret Location l) is a callback method. Pa-

rameter l is a secret source that must propagate through the overriding method

MyListener.onLocationChanged(Location loc). The method overriding constraints

91

(Section 2.2.3) lead to:

typeof (MyListener.onLocationChanged(Location loc))

<:

typeof (LocationListener.onLocationChanged(secret Location l))

This entails l <: loc, forcing loc to be secret as well.

The inference assumes that library method Location.getLatitude() is typed as

follows:

poly double getLatitude(poly Location this)

and creates the following constraints at Statement 4:

loc <: q4 B poly q4 B poly <: lat

Because loc is secret, the callsite context q4 is inferred as secret. Consequently, lat is

inferred as secret as well, which leads to a type error at Statement 5 where a public

argument is required (Here the parameter msg of Log.d(String tag, String msg) is a

public sink.) Hence, the privacy leak is captured.

We apply these conservative defaults to the Java and Android libraries. We

can apply these defaults to any third-party library we do not wish to analyze.

6.2.7.2 Multiple Entry Points and Callbacks

Multiple entry points and the ubiquitous use of callbacks in Android apps cause

difficulty for traditional points-to based static analysis. The Android app is not a

closed program. Instead, it runs within the Android framework, which implicitly

creates objects of the user-defined classes and calls user-defined methods in the app

through callbacks.

The inference is type-based and modular. Therefore, it can analyze any given

set of classes.

However, the analysis of an Android app is different from the analysis of an open

library and it requires special consideration. Roughly speaking, we need to capture

the “connections” among callback methods, or our inference might miss privacy leaks

92

1 public LocationLeak2 extends Activity implements LocationListener {
2 private double latitude;
3 protected void onResume() {
4 double d = this.latitude; // TYPE ERROR!

5 Log.d(”Latitude”, ”Latitude: ” + d); // sink

6 }
7 public void onLocationChanged(Location loc) {
8 double lat = loc.getLatitue(); // loc is a source

9 this.latitude = lat;
10 }
11 }

Figure 6.14: LocationLeak2 refactored from DroidBench, highlights our
inference’s novel handling of callback methods.

through fields. Consider the LocationLeak2 example refactored from DroidBench

in Figure 6.14. The secret lat of the current location, obtained in callback method

onLocationChanged, flows through field latitude and reaches the public parameter of

Log.d in another callback method, onResume. Local variables lat and d are secret

and public, respectively. If the inference analyzed the app as a standard open

library (e.g., as in [15]), it would infer this of onResume as public. This is because

of (tread) constraint thisonResume B latitude <: d where S(latitude) = {secret, poly}
and S(d) = {public}. Due to this constraint, S(latitude) would be updated to

{poly}. Further, it would infer this of onLocationChanged as secret, because of (twrite)

constraint lat <: thisonLocationChanged B latitude where S(lat) = {secret}. The inferred

typing would type-check and the leak through field lattitude would be missed.

If the app were a standard open library, it would be composed with user code,

which would instantiate the Activity and reveal the leak. Consider the following

hypothetical user code

1 Activity a = new LocationLeak2();

2 a.onLocationChanged(loc);

3 a.onResume();

When composing this code with the inferred typing for LocationLeak2, there would be a

type error because Statement 2 requires a to be secret (since this of onLocationChanged

93

is mutable, there is equality constraint at 2: a = q2 B thisonLocationChanged), while

Statement 3 requires a to be public.

The Android app however, is not composed with user code. Instead, the Activity,

as well as other component objects, are instantiated by the Android framework.

Therefore, the inference needs to handle the implicit instantiation of app objects.

The inference creates equality constraints for this of all callback methods in the same

class, thus “connecting” this of callback methods. If the app type-checks, this means

there is a solution for constraints

qa <: qi1 B qthiscallback1

qa = qi2 B qthiscallback2

...

which correspond to the calls to callback methods in the Android framework.

In the LocationLeak2 example, the inference creates an equality constraint

between the this parameters of onResume and onLocationChanged:

thisonResume = thisonLocationChanged

thisonResume becomes secret. There is a type error at Statement 4, thus detecting the

privacy leak.

6.2.7.3 Inter-Component Communication (ICC)

Android components (activity, service, broadcast receiver and content provider)

interact through ICC objects — mainly Intents. Communication can happen across

applications as well, to allow functionality reuse. There are two forms of Intent in

Android:

• Explicit Intents have an explicit target component — the exact target class

of the Intent is specified.

• Implicit Intents do not have a target component, but they include enough

information for the system to implicitly determine the target component.

In the following code snippet

94

1 Intent i1 = new Intent();

2 Intent i2 = new Intent();

3 i1.setClassName(”edu.rpi”,”edu.rpi.MyClass”);

4 i2.setAction(”edu.rpi.ACTION”);

5 i2.addCategory(”edu.rpi.CATEGORY”);

i1 is an explicit Intent whose target component is “edu.rpi.MyClass”, while i2 is an

implicit Intent whose target component is determined by the information it includes.

Capturing data flow through Intents is important for detecting privacy leaks

in Android. Consider the example refactored from a real malware app, Fakedaum4

in Figure 6.15. The return value of SmsMessage.createFromPdu is a source and

the parameter of HttpPost.setEntity is a sink. The broadcast receiver SmsReceiver

intercepts the SMS messages, then puts the messages into an Intent and starts the

background service TaskService with the Intent. Then TaskService sends the messages

to the Internet without user consent. If the communication between the broadcast

receiver SmsReceiver and the background service TaskService is not captured, there is

no way to detect the privacy leak.

For explicit Intent whose target class is specified by a final or constant string,

the inference connects the data carried by Intent using placeholders. Specifically, it

replaces the Intent with a “typed” Intent at both the sender component and the

receiver component. In addition, each putExtra and getExtra are treated as writing

and reading a field in the “typed” Intent, respectively. Since the target class of Intent

it in Figure 6.15 is specified by constant TaskService.class, the inference transforms

the program into:

10 ...

11 TaskService Intent it = new TaskService Intent();

12 TaskService Intent.data = sb.toString();

13 ...

18 String body = TaskService Intent.data;

4http://contagiominidump.blogspot.com/2013/11/fakedaum-vmvol-android-infostealer.

html (Retrieved on April 29, 2014)

95

1 public class SmsReceiver extends BroadcastReceiver {
2 public void onReceive(Context c, Intent i) {
3 Bundle bundle = intent.getExtras();
4 Object[] pdusObj = (Object[]) bundle.get(”pdus”);
5 StringBuilder sb = new StringBuilder();
6 for (int i = 0; i < pdusObj.length; i++) {
7 SmsMessage msg = SmsMessage.createFromPdu((byte[]) pdusObj[i]); //

source

8 String body = msg.getDisplayMessageBody();
9 sb.append(body);

10 }
11 Intent it = new Intent(c, TaskService.class);
12 it.putExtra(”data”, sb.toString());
13 startService(i);
14 }
15 }
16 public class TaskService extends Service {
17 public void onStart(Intent it, int d) {
18 String body = it.getSerializableExtra(”data”);
19 List list = new LinkedList();
20 list.add(body);
21 HttpClient client = HttpClientManager.getHttpClient();
22 HttpPost post = new HttpPost();
23 post.setURI(URI.create(”http://103.30.7.178/getMotion.htm”));
24 Entity e = new UrlEncodedFormEntity(list, ”UTF8”);
25 post.setEntity(e); // sink

26 client.execute(post);
27 }
28 }

Figure 6.15: SMS message stealing in Fakedaum. The SMS message is
intercepted in SmsReceiver and passed to TaskService via Intent. Finally, the
message is sent out to the Internet using HTTP post method, resulting
in a message leak.

As a result, the intercepted message is connected to the post data via placeholder

data of TaskService Intent. The leak is captured.

For explicit Intents whose target class is not specified by a constant string, a

string analysis, which we leave for future work, is required to determine the target.

The inference makes the worst-case assumption for such explicit Intents, as well as

96

for implicit Intents carrying sensitive data, as their content can be intercepted by

any, possibly malicious, component. This is achieved by annotating as public the

Intent parameter of library methods that start new components, such as startActivity

and startService. For example, if i2 refers to an implicit Intent carrying current

location information, then there is a type error at statement startSerivce(i2) because

startSerivce requires a public argument, but i2 is secret as it contains secret data.

CHAPTER 7

Empirical Results

The inference framework is built on top of the Checker Framework (CF) [18, 14].

The set-based solver generates the type constraints using CF for each statement, and

solves the constraints using fixpoint iteration to produce the set-based solution. CF

takes as input the Java source code, which unfortunately is not available for most

Android apps, as they are usually delivered as an Android Package Files (APKs).

Therefore, we extended the inference framework by building an Android constraint

generation front-end, based on Soot [67] and Dexpler [68]. The architecture of the

implementation of our inference framework is shown in Figure 7.1. The inference

Framework is publicly available at http://code.google.com/p/type-inference/,

including source.

In this section, we present the empirical results for ReIm, Ownership Types,

Universe Types, SFlow/Integrity and SFlow/Confidentiality. All evaluations were

performed on a server with IntelR© XeonR© CPU X3460 @2.80GHz and 8 GB RAM

(The maximal heap size is set to 2 GB.) The software environment consists of Oracle

JDK 1.6, Checker Framework 1.3.0, Soot 2.5.0 nightly build on GNU/Linux 3.2.0.

7.1 ReIm

The ReIm instantiation of the inference framework, called ReImInfer is evalu-

ated on 13 large Java benchmarks, including 4 whole-program applications and 9

Java libraries.

Whole programs:

Portions of this chapter previously appeared as: W. Huang et al., “Inference and checking of
object ownership,” in Proc. European Conf. Object-Oriented Programming, Beijing, China, 2012,
pp. 181–206.

Portions of this chapter previously appeared as: W. Huang et al., “ReIm & ReImInfer:
Checking and inference of reference immutability and method purity,” in Proc. ACM SIGPLAN
Conf. Object-Oriented Programming, Systems, Languages, and Applications, Tucson, AZ, 2012, pp.
879–896.

Portions of this chapter previously appeared as: W. Huang et al., “Type-based taint analysis for
Java web application,” in Int. Conf. Fundamental Approaches to Software Engineering, Grenoble,
France, 2014, pp. 140–154.

97

98

Figure 7.1: Architecture of the implementation of the inference frame-
work.

• Java Olden (JOlden) is a benchmark suite of 10 small programs.

• ejc-3.2.0 is the Java Compiler for the Eclipse IDE.

• javad is a Java class file disassembler.

• SPECjbb 2005 is SPEC’s benchmark for evaluating server side Java.

Libraries:

• tinySQL-1.1 is a database engine.5

• htmlparser-1.4 is a library for parsing HTML.

• jdbm-1.0 is a lightweight transactional persistence engine.

• jdbf-0.0.1 is an object-relational mapping system.

• commons-pool-1.2 is a generic object-pooling library.

• jtds-1.0 is a JDBC driver for Microsoft SQL Server and Sybase.

• java.lang is the package from JDK 1.6

5We added 392 empty methods in tinySQL in order to compile it with Java 1.6. The modified
version is available online.

99

• java.util is the package from JDK 1.6.

• xalan-2.7.1 is a library for transforming XML documents to HTML from the

DaCapo 9.12 benchmark suite.

Benchmarks JOlden, tinySQL, htmlparser, and ejc are precisely the benchmarks

used by Javarifier [6]. Javarifier’s distribution includes regression tests, which greatly

facilitates the comparison between Javarifier and ReImInfer. java.lang and java.util

are included because they are representative libraries. The rest of the benchmarks

come from our previous experimental work [69].

7.1.1 Experimental Setup

We treat the this parameters of java.lang.Object’s hashCode, equal, and toString

as readonly, even though these methods may mutate internal fields (these fields are

used only for caching and can be excluded from the object state). This handling is

consistent with the notion of observational purity discussed in [70] as well as other

related analyses such as JPPA [29]; these methods are intended to be observationally

pure. Our analysis does not detect bugs due to unintended mutation in these

methods.

ReIm treats private fields f that are read and/or written through this in exactly

one instance method m, as if they were local variables. Precisely, this means that

for these fields we allow qualifier mutable, and treat field reads x = this.f and writes

this.f = x as if they were assignments x = f and f = x. One such field and method are

current and nextElement() in class Enumerate shown in Figure 7.2. We preserve the

dependence between this and f, by using an additional constraint: qthis <: qf . Thus,

when f is mutated in m, f and this are inferred as mutable. When f is readonly in the

scope of m, but depends on the context of the caller, f is polyread and this is polyread

or mutable. If f is readonly, no constraints are imposed on this. As an example,

field current and this of nextElement() in Figure 7.2 are both inferred polyread. The

motivation behind this optimization is precisely the Enumeration class in Figure 7.2.

The goal is to transfer the dependence from the element stored in the container, to

the container itself, which is important for purity inference. If current were treated

as a field, it would be polyread, and therefore, this of elements would be mutable,

100

1 public class Body {
2 Body next;
3 public final Enumeration elements() {
4 class Enumerate implements Enumeration {
5 private Body current;
6 public Enumerate() { current = Body.this; }
7 public Object nextElement() {
8 Object retval = current;
9 current = current.next;

10 return retval;
11 }
12 }
13 return new Enumerate();
14 }
15 }

Figure 7.2: The elements() method in JOlden/BH

which entails that every container that creates an enumeration is mutable, even if

its elements were not mutated. If current was excluded from abstract state, then

this of nextElement would have been readonly and mutation from elements would not

have been transferred to the container. Our optimization allows this of nextElement

and elements to be polyread, which is important for purity inference, as we discuss

shortly. The optimization affected 8 nextElement and elements methods and 12 other

methods that call nextElement and elements throughout all of our benchmarks.

Recall that reference immutability inference is modular. Thus, it is able to

analyze any given set of classes L. If there are unknown callees in L, the analysis

assumes default typing mutable,mutable → polyread. The mutable parameters as-

sume worst-case behavior of the unknown callee — the unknown callee mutates its

arguments. Clearly, readonly is the most general return type. However, this will

require that every use of the return in the client is readonly, and many clients violate

this restriction. mutable,mutable → polyread is safe because we can always assign

the polyread return value to a readonly variable. And it also imposes a constraint

on the callee: e.g., suppose the code for X id(X p) { return p; } was unavailable and

we assumed typing mutable→ polyread for id. When it becomes available, p will be

polyread.

101

User code U , which uses previously analyzed library L, is analyzed separately

using the result of the analysis of L. In our case, when analyzing user code U , we use

the annotated JDK available with Javarifier from the CF; the similarities between

Javari and ReIm justify this use. Correctness of the composition is ensured by the

check that the method overriding constraints (see Section 2.2.3) hold: for every m′

in U that overrides an m from L, typeof (m′) <: typeof (m), i.e.

(qthism′ , qpm′ → qretm′) <: (qthism , qpm → qretm)

must hold, which means that qthism <: qthism′ , qpm <: qpm′ , and qretm′ <: qretm must

hold. For example, suppose that L contains code x.m() where thism, is inferred as

readonly. The typing is correct even in the presence of callbacks. If x.m() results in

a callback to m′ in U (m′ overrides m), constraint typeof (m′) <: typeof (m) which

entails thism <: thism′ , ensures that thism′ is readonly as well.

Of course, it is possible that U violates the subtyping expected by L. Interest-

ingly however, in our experiments the only violations were on special-cased methods

of Object: equals, hashCode and toString. Furthermore, the vast majority of violations

occurred in the java.util library. As with other analyses (JPPA), we report these

violations as warnings.

7.1.2 Inference Result

Below, we present our results on inference of reference immutability. Table 7.1

presents the result of running our inference on all benchmarks.

Inference Output In all benchmarks, about 41% to 69% of references are reported

as readonly, less than 16% are reported as polyread and 24% to 50% are reported as

mutable.

Timing Results Figure 7.3 compares the running times of ReImInfer and Javarifier

on the first 5 benchmarks in Table 7.1. ReImInfer and Javarifier analyze exactly the

same set of classes (given at the command-line), and use stubs for the JDK. That is,

both ReImInfer and Javarifier generate and solve constraints for the exact same set

102

Table 7.1: Inference results for reference immutability. #Line shows the
number of lines of the benchmarks, including blank lines and comments.
Annotatable References include all references, including fields, local vari-
ables, return values, formal parameters, and implicit parameters this. It
does not include variables of primitive type. #Ref is the total number of
annotatable references, #Readonly, #Polyread, and #Mutable are the
number of references inferred as readonly, polyread, and mutable, respectively.
We also include the running time for the benchmarks. The last column
Time shows the total running time in seconds, including reference im-
mutability inference and type-checking.

Annotatable References
Benchmark #Line #Ref #Readonly #Polyread #Mutable Time

JOlden 6223 949 453 (48%) 149 (16%) 347 (37%) 5.7
tinySQL 31980 4247 2644 (62%) 418 (10%) 1185 (28%) 15.1
htmlparser 62627 4853 2711 (56%) 421 (9%) 1721 (35%) 16.9
ejc 110822 15434 6161 (40%) 1803 (12%) 7470 (48%) 66.2
xalan 348229 41186 25181 (61%) 3254 (8%) 12751 (31%) 81.1
javad 4207 363 249 (69%) 19 (5%) 95 (26%) 3.2
SPECjbb 28333 1537 830 (54%) 246 (16%) 461 (30%) 9.3
commons-pool 4755 602 266 (44%) 37 (6%) 299 (50%) 3.8
jdbm 11610 1161 470 (40%) 161 (14%) 530 (46%) 5.9
jdbf 15961 2510 1669 (66%) 240 (10%) 601 (24%) 9.6
jtds 38064 5048 2805 (56%) 299 (6%) 1944 (39%) 17.2
java.lang 43282 2970 2028 (68%) 187 (6%) 755 (25%) 12.1
java.util 59960 6920 2852 (41%) 1005 (15%) 3063 (44%) 24.5

of classes, and neither analyzes the JDK. The timings are the medians of three runs.

ReImInfer scales better than Javarifier. ReImInfer appears to scale approxi-

mately linearly. As the applications grow larger, the difference between ReImInfer

and Javarifier becomes more significant. These results are consistent with the results

reported by Quinonez et al. [16] where Javarifier posts significant nonlinear growth

in running time, when program size goes from 62kLOC to 110kLOC.

7.1.3 Correctness and Precision Evaluation

To evaluate the correctness and precision of our analysis, we compared our

result with Javarifier on the first four benchmarks from Table 7.1. We do not compare

the numbers directly because we use a different notion of annotatable reference from

Javarifier (e.g., Javarifier counts List<Date> twice while we only count it once).

In our comparison, we examine only fields, return values, formal parameters, and

this parameters; we call these references identifiable references. We exclude local

103

Figure 7.3: Runtime performance comparison. Note that the running
time for type-checking is excluded for both ReImInfer and Javarifier.

variables because Javarifier does not give identifiable names for local variables (it

only shows local 0, local 1, and so on). In addition, polyread fields in Javarifier are

called this-mutable. In the comparison, we view all such fields as polyread.

JOlden We examined all programs in the Java Olden (JOlden) benchmark suite.

We found 34 differences between our result and Javarifier’s, out of 758 identifiable

references. We exclude the following difference from the count: the this parameters

of constructors are reported as readonly by Javarifier, while they are reported as

mutable if this is mutated, by ReImInfer. Differences due to the annotated JDK are

also excluded because Javarifier treated variables from library methods as mutable

even though we have specified the annotated JDK. 8 out of the 34 differences are

the nextElement() method that implements the Enumeration interface (Figure 7.2).

Javarifier infers the return value as readonly. This is correct with respect to the

semantics of Javari and Javarifier, which separates a structure from the elements

stored in it; thus, a mutation on an element, should not necessarily affect the data

structure itself.

The semantics of ReIm and ReImInfer demands that the return of nextElement

104

should be polyread, because there are cases when the retrieved element is mutated.

ReImInfer reports that nextElement()’s return is polyread. Also Javarifier infers the

this parameter of nextElement() as mutable while ReImInfer reports that it is polyread.

This is possible because ReImInfer treats field current in Figure 7.2 as a local variable

as discussed earlier. There are 4 nextElement() methods in the JOlden benchmark

suite, causing 8 differences in total.

These 8 differences directly or indirectly lead to the remaining 26 differences.

First, these 8 differences directly lead to 8 differences in the current field and the

elements() method in the Enumerate class, which is shown in Figure 7.2. Our analysis

infers retval as polyread because the return value of nextElement() is polyread as

discussed earlier. This causes field current to be inferred as polyread in statement

Object retval=current since current is a field but treated as a local variable. As a

result, the this parameter of elements() becomes polyread due to the assignment

current=Body.this. Because Javarifier infers the return value of nextElement() as

readonly, it reports both the current field and the this of elements() are readonly,

which leads to 8 differences in total. The treatment of Javarifier reflects the expected

semantics of Javari — the container that calls elements should not be affected by the

data stored in it. ReIm and ReImInfer’s semantics demands that a mutation on the

element is propagated to the container.

Second, these 8 differences on current and elements() propagate to the other 18

differences. The following code shows an example:

Body bodyTab = ...;
for(Enumeration e = bodyTab.elements(); e.hasMoreElements();) {

Body b = (Body)e.nextElement();
...
b.setProcNext(prev);
}

Here b is mutable since the this parameter of setProcNext(Body) is mutable. Because

bodyTab is indirectly assigned to b through the Enumeration instance referred by e,

bodyTab should be mutable as well. Javarifier reports bodyTab is readonly because

the this parameter of elements() is inferred as readonly. ReImInfer reports bodyTab as

mutable. This is important for purity — e.g., if bodyTab is a parameter, its mutability

entails that the enclosing method is impure.

105

Other benchmarks For the remaining three benchmarks, tinySQL, htmlparser and

ejc, we examined 4 randomly selected classes from each (a total of 12 classes). We

found 2 differences out of 868 identifiable references. The 2 differences are caused by

the fact that Javarifier infers a parameter of String type as polyread, which causes an

actual argument to become polyread or mutable; ReImInfer infers this parameter as

readonly.

Overall, the differences are very minor. Most are attributable to the different

semantics of ReIm and Javari, and the few others are due to an apparent bug in a

corner case of Javarifier’s handling of the annotated JDK.

7.1.4 Purity Inference

This section presents our results on purity inference. We treat methods equals,

hashCode, toString in java.lang.Object, as well as java.util.Comparable.compareTo, as

observationally pure. This is analogous to previous work [29].

Our purity inference is modular. Reference immutability assumptions for

unknown callees are exactly as before. We ran ReImInfer on java.lang and java.util

packages, and we assumed that other library methods have not mutated static fields.

JPPA, a Java Pointer and Purity Analysis tool by Sălcianu and Rinard [29], makes

the same assumption for unknown library methods, and our decision to use qm =

readonly as default, is motivated by this, in order to facilitate comparison with JPPA.

When composing previously analyzed libraries L with user code U for purity

inference, we need one additional check: for every m′ in U that overrides m in L,

we must have qm <: qm′ . In particular, if qm is inferred as readonly, then qm′ must

be readonly as well. As with reference immutability, it is possible that user code

violates this constraint. In the first 11 benchmarks in Table 7.1, we found 205 out of

22,720 user methods that violate the inferred statictypeof on java.lang and java.util

packages, and the vast majority of the violations are on the special-cased methods,

equals, hashCode, and toString. These violations are reported as warnings.

The results of purity inference by ReImInfer are shown in Table 7.1, column

#Pure. To evaluate analysis precision, we compared with JPPA by Sălcianu and

Rinard [29] and JPure by Pearce [71]. We ran JPPA and JPure on the JOlden

106

Table 7.2: Pure methods in Java Olden benchmarks.

Program #Meth JPPA JPure ReImInfer

BH 69 20 (29%) N/A 33 (48%)
BiSort 13 4 (31%) 3 (23%) 5 (38%)
Em3d 19 4 (21%) 1 (5%) 8 (42%)
Health 26 6 (23%) 2 (8%) 11 (42%)
MST 33 15 (45%) 12 (36%) 16 (48%)
Perimeter 42 27 (64%) 31 (74%) 38 (90%)
Power 29 4 (14%) 2 (7%) 10 (34%)
TSP 14 4 (29%) 0 (0%) 1 (7%)
TreeAdd 10 1 (10%) 1 (10%) 6 (60%)
Voronoi 71 40 (56%) 30 (42%) 47 (66%)

benchmark suite and directly compared its output with ours. Table 7.2 presents the

comparison results.

To summarize our results, ReImInfer scales well to large programs and shows

good precision compared to JPPA and JPure. Furthermore, ReImInfer, which is

based on the stable and well-maintained CF, appears to be more robust than JPPA

and JPure, both of which are based on custom compilers. These results suggest that

ReImInfer can be useful in practice.

7.1.4.1 Comparison with JPPA

JOlden There are 59 differences out of 326 user methods between ReImInfer’s

result and JPPA’s. Of these differences, (a) 4 are due to differences in definition-

s/assumptions, (b) 51 are due to limitations/bugs in JPPA and (c) 4 are due to

limitations in ReImInfer.

4 differences are due to JPPA’s assumption about unknown library methods.

For example, JPPA reports as pure the method median in Jolden/TSP, which invokes

new java.lang.Random(). The constructor Random should not be pure because it

mutates a static field seedUniquifier. ReImInfer precomputes static immutability

types qm on the JDK library and thus reports method median as impure.

51 differences are due to limitations/bugs of JPPA. 38 differences are the

constructors, which ReImInfer reports as pure but JPPA does not. According to [29],

JPPA follows the JML convention and constructors that mutate only fields of the this

object are pure. Thus, JPPA should have inferred them as pure. ReImInfer follows

107

the same definition and reports these constructors as pure. There are 3 differences

on methods that are inferred as pure by ReImInfer but impure by JPPA. These 3

methods return newly-constructed objects, which are mutated later. According to the

definition in [29], JPPA should have inferred them as pure. There is 1 difference on

method loadTree in Jolden/BH. It is likely a bug in JPPA because the this parameter

is passed to another object’s field which is mutated later, but JPPA reports loadTree

as pure. ReImInfer detects the this parameter is mutated and reports the method

as impure. There are 9 methods reported as pure by ReImInfer but not covered by

JPPA. This is because JPPA is a whole-program analysis and these methods are not

reachable, resulting in 9 differences in the comparison.

The remaining 4 differences are the nextElement method discussed in Sec-

tion 7.1.1. Because ReImInfer considers the current field as a local variable, it infers

these 4 methods as pure while JPPA considers they are impure.

Other benchmarks We attempted to run JPPA and compare on benchmarks

tinySQL, htmlparser, and ejc as we did with Javarifier. tinySQL is a library and there

is no main method. htmlparser, which is a library as well, comes with a main, which

exercises a portion of its functionality; JPPA threw an exception on htmlparser which

we were unable to correct. JPPA completed on ejc. Due to the fact that it is a

whole-program analysis, it analyzed 3790 reachable user methods; ReImInfer covered

all 4734 user methods.

We examined 4 randomly selected classes from ejc and found 17 differences

out of 163 methods in total. 9 methods are not reachable according to JPPA. Of

the remaining 8 differences, (a) 2 are due to limitations/bugs in JPPA and (b) 6

are due to limitations/bugs in ReImInfer. 1 constructor that should have been pure

according to the JML convention was reported as impure by JPPA. In addition,

1 method which we believe is pure because it does not mutate any prestate, was

reported as impure by JPPA. The remaining 6 methods are reported as pure by

JPPA but impure by ReImInfer; this is imprecision in ReImInfer. These methods

are inferred as impure by ReImInfer because they are overridden by impure methods.

This is an insurmountable imprecision for ReImInfer.

108

7.1.4.2 Comparison with JPure

JOlden There are 60 differences out of 257 user methods between ReImInfer’s

result and JPure’s, excluding the BH program (JPure could not compile BH). Of these,

(a) 29 differences are caused by different definitions/assumptions, (b) 2 are caused by

limitations/bugs in ReImInfer, and (c) 29 differences are caused by limitations/bugs

in JPure.

29 differences are caused by different definitions of pure constructors. We

follow the JML convention that a constructor is pure if it only mutates its own

fields. JPure has different definition of a pure constructor and that leads to these

differences. 2 differences are the nextElement method where ReImInfer considers

the current field as a local variable as discussed above. There are 8 differences in

toString methods, which are inferred as impure by JPure. Our examination shows

that those methods are pure; it appears that they should be pure, but are inferred as

impure due to imprecision in JPure, according to [71]. 16 differences are caused by

methods that return fresh local references. JPure should have been able to identify

them as @Fresh, but it did not. The remaining 5 differences are due to the static

methods in java.lang.Math. JPure infers all methods that invoke the static methods

in java.lang.Math as impure, while ReImInfer identifies that these methods satisfy qm

is readonly by using the inference result from the java.lang package.

Other benchmarks We attempted to run JPure on the libraries from JDK 1.6,

but that caused a problem with the underlying compiler in JPure. We attempted to

run JPure on tinySQL, htmlparser and ejc. In all three cases, the tool issued an error.

We were unable to perform direct comparison on larger benchmarks.

7.2 Universe Types and Ownership Types

7.2.1 Experimental Setup

We evaluated our implementation using eight Java programs of up to 110kLOC

(see Table 7.3). The analysis processes only application code. References from

libraries receive {〈own|p〉, 〈p|p〉} for Ownership Types and {peer} for Universe Types

in the initial set-based solution. The analysis is modular, in the sense that it can

109

Table 7.3: The benchmarks used by Ownership Types and Universe
Types.

Benchmark #Lines #Meths Description

JOlden 6223 326 Benchmark suite of 10 small programs
tinySQL 31980 1597 Database engine
htmlparser 62627 1698 HTML parser
ejc 110822 4734 Compiler of the Eclipse IDE
javad 4207 140 Java class file disassembler
SPECjbb 12076 529 SPEC’s benchmark for evaluating server side Java
jdepend 4351 328 Java package dependency analyzer
classycle 8972 440 Java class and package dependency analyzer

Table 7.4: The inference results for Universe Types. Column #Ref gives
the total number of references excluding implicit parameters this. Column
#Pure gives the number of pure methods inferred automatically based
on reference immutability [15]. Columns #any, #rep, and #peer give the
number of references inferred as any, rep, and peer, respectively. No user
annotations are needed for the inference of Universe Types; therefore,
there are only zeros in the #Man column. Last column Time shows the
total running time in seconds including parsing the source code, type
inference, and type-checking.

Benchmark #Pure #Ref #any #rep #peer #Man Time

JOlden 175 685 227 (33%) 71 (10%) 387 (56%) 0 11.3
tinySQL 965 2711 630 (23%) 104 (4%) 1977 (73%) 0 18.2
htmlparser 642 3269 426 (13%) 153 (5%) 2690 (82%) 0 22.9
ejc 1701 10957 1897 (17%) 122 (1%) 8938 (82%) 0 119.7
javad 60 249 31 (12%) 11 (4%) 207 (83%) 0 4.1
SPECjbb 195 1066 295 (28%) 74 (7%) 697 (65%) 0 13.6
jdepend 102 542 95 (18%) 14 (3%) 433 (80%) 0 7.2
classycle 260 946 87 (9%) 11 (1%) 848 (90%) 0 9.9

analyze whatever code is available, including libraries with no main method.

7.2.2 Inference Result of Universe Types

Inference of Universe Types requires information about method side effects. We

used our purity inference tool described in the previous section. The purity inference

relies on ReIm. The maximal typing always type-checks for Universe Types, and the

set-based solver infers the unique maximal typing.

Table 7.4 shows the inference results for Universe Types. Across all benchmarks,

9%–33% of all variables are inferred as any, the best qualifier. 1% to 10% of all

variables are inferred as rep. A relatively large percentage (57%–92%) of the variables

110

Table 7.5: The inference results for Ownership Types. Column #Ref
again gives the total number of references excluding the implicit param-
eters this. Columns #〈rep| 〉, #〈own| 〉, #〈p| 〉, and #〈norep| 〉 give the
numbers of variables whose owners are inferred as rep, own, p, and norep,
respectively. The boldfaced number in parentheses in column #〈rep| 〉 is
an upper bound on rep typings; it is discussed in the text. #Man shows
the total number of manual annotations and, in parentheses, the number
of annotations per 1kLOC. Time shows the running time in seconds.

Benchmark #Ref #〈rep| 〉 #〈own| 〉 #〈p| 〉 #〈norep| 〉 #Man Time

JOlden 685 67
(10%/10%)

497
(73%)

24
(4%)

97
(14%)

13 (2) 10.3

tinySQL 2711 224
(8%/11%)

530
(20%)

5
(0%)

1952
(72%)

215 (7) 18.4

htmlparser 3269 330
(10%/11%)

629
(19%)

36
(1%)

2274
(70%)

200 (3) 33.6

ejc 10957 467
(4%/4%)

1768
(16%)

50
(0%)

8672
(79%)

592 (5) 122.4

javad 249 44
(18%/19%)

27
(11%)

74
(30%)

104
(42%)

46 (10) 5.5

SPECjbb 1066 166
(16%/16%)

141
(13%)

71
(7%)

688
(65%)

73 (6) 17.1

jdepend 542 130
(24%/25%)

156
(29%)

128
(24%)

128
(24%)

26 (6) 13.7

classycle 946 153
(16%/20%)

173
(18%)

28
(3%)

592
(63%)

90 (10) 11.7

are inferred as peer, resulting in a flat ownership structure. This is consistent with

the results by Dietl et al. [17]. There are several possible reasons that lead to flat

ownership structures. One is due to utility methods whose formal parameters are

passed to impure methods. This forces the formal parameters to be peer. Another

reason is that the inference uses the default peer annotation for libraries.

7.2.3 Inference Result of Ownership Types

In OT, we add an additional modifier norep, which refers to root, as described

in detail in [72]. We use norep as the default type for String and boxed primitives

such as Boolean, Integer, etc.

Table 7.5 shows the inference results for OT. Note that there are many 〈norep| 〉
variables; the majority of these are strings and boxed primitives, e.g. 521 out of 688

〈norep|norep〉 variables in SPECjbb are strings and boxed primitives whose default

type is norep.

111

Compared to UT, a relatively large percentage (4%–24%) of variables are

inferred as 〈rep| 〉 in OT. Note however, that this does not imply a deeper ownership

tree compared to UT . In UT, many of the any variables can refer to a rep object (as

UT distinguishes readonly access); in contrast, in OT only a rep variable can refer to

a rep object.

Due to the fact that the maximal typing does not always type-check for OT,

the inference requires manual annotations. Column #Man gives the total numbers of

manual annotations that were added and, in parentheses, the number of annotations

per 1kLOC. The annotation burden is low — on average, 6 annotations per 1kLOC.

Although the set-based solver cannot produce a maximal typing automatically, it is

quite valuable, because it reduces the burden of annotations on programmers. The

set-based solver prints all conflicts and lets the programmer choose an annotation

that resolves the conflict in such a way that it reflects their intent. This process

continues until all conflicts are resolved. By doing so, we annotated JOlden (6223

LOC) in approximately 10 minutes and SPECjbb in approximately 2 hours. The

annotations reflect the intent of the first author, but not necessary the intent of the

programmers of these benchmarks. Finally, the last column Time shows the time in

seconds to do type inference and type checking after the manual annotations. It is

approximately equal to the initial run that outputs all conflicts and does not include

the time to annotate the benchmark.

The boldfaced percentage shown in parentheses in column #〈rep| 〉, is the

percentage of all references that contain a 〈rep|rep〉, 〈rep|own〉 or 〈rep|p〉 in their

set-based solution. This is an upper bound on the possible rep typings: even an

ownership type system with many ownership parameters will be unable to type a

larger percentage of variables as rep. The fact that the percentage of #〈rep| 〉’s in

our typing is close to this bound, has two implications: (1) our typing is precise, and

(2) one ownership parameter may be sufficient in practice (again, if the goal is to

maximize the number of rep typings).

112

root

i

j

k

root

i

j

k

root

i j k

(a) Object graph (b) OT tree (c) UT tree

Figure 7.4: Write access to enclosing context results in flatter structure
for UT as compared to OT. The bold edge from j to k highlights the
write access.

7.2.4 Comparing Universe Types vs. Ownership Types

In this section, we compare Universe Types, which enforce the owner-as-modifier

encapsulation discipline, to Ownership Types, which enforce the owner-as-dominator

encapsulation discipline, using examples we observed in the benchmarks.

In some cases, Universe Types inferred flatter structures than Ownership Types.

This happens when an object j modifies an object k in an enclosing context. For

example, consider Figure 7.4. If object j modifies k, j and k must be peers in UT,

which will force the flat ownership tree in Figure 7.4(c). In contrast, OT reflects

dominance and produces the deeper ownership tree shown in Figure 7.4(b).

In other cases, Ownership Types inferred flatter structures than Universe Types.

OT disallows exposure of internal objects outside of the boundary of the owner. UT

is more permissive, in the sense that it allows readonly exposure. Consider Figure 7.5.

which represents a container c, its internal representation e and an iterator i over e.

The OT tree is flatter because the iterator i creates a path to e which does not go

through c. Therefore, c, e, and i must have x as their owner. In contrast, UT allows

the exposure of i to x because this exposure is readonly. Therefore, c remains the

owner of both e and i.

Table 7.6 compares OT and UT on the benchmarks. We consider only allocation

sites, excluding strings and boxed primitives. Allocation sites provide the best

approximation of ownership structure.

On average 25% of the OT 〈rep| 〉 sites are typed rep in UT as well. On the

113

root

x

c

e

i

root

x

c i e

root

x

c

e i

(a) Object graph (b) OT tree (c) UT tree

Figure 7.5: Readonly sharing of internal representation results in flat-
ter structure for OT as compared to UT. The dotted edge from i to e
highlights the readonly access.

Table 7.6: Ownership Types vs. Universe Types on allocation sites. The
four columns give the number of OT/UT pairings and, in parenthesis, the
corresponding percentages. For example, column 〈rep| 〉/peer shows the
number of allocation sites that were inferred as rep in Ownership Types
and peer in Universe Types.

Benchmark OT: 〈rep| 〉 〈rep| 〉 not 〈rep| 〉 not 〈rep| 〉
UT: rep peer rep not rep

JOlden 26 (22%) 8 (7%) 19 (16%) 66 (55%)
tinySQL 32 (6%) 123 (24%) 13 (2%) 355 (68%)
htmlparser 27 (2%) 234 (20%) 16 (1%) 926 (77%)
ejc 44 (2%) 336 (12%) 81 (3%) 2321 (83%)
javad 6 (10%) 38 (66%) 0 (0%) 14 (24%)
SPECjbb 75 (26%) 84 (29%) 25 (9%) 110 (37%)
jdepend 13 (7%) 71 (41%) 1 (1%) 90 (51%)
classycle 1 (0%) 109 (45%) 5 (2%) 128 (53%)

other hand, on average 64% of the UT rep sites are typed 〈rep| 〉 in OT as well. The

discrepancy shows that it may be more common to have write access to enclosing

context (which lowers rep to peer in UT), than it is to have readonly sharing of

internal structure (which allows an object to stay rep in UT while it is not rep in

OT). On average 40% of all allocation sites are inferred as rep in OT, and 14% are

inferred as rep in UT, which suggests that write access to enclosing context is more

common than readonly sharing of internal structure. The results suggest that in

general, UT and OT capture distinct ownership structure. Note that as expected,

114

Table 7.7: Information about benchmarks and running time of SFlow-
Infer. The file and line counts include Java files precompiled from JSP
files. The time is for running configuration [Parameter manipulation,
SQL injection]. The time for running other configurations is practically
the same.

Benchmark Version #File #Line Time (s)

blojsom 1.9.6 61 12830 15.1
blueblog 1.0 31 4139 7.5
friki 2.1.1 21 1843 4.5
gestcv 1.0 119 7422 10.1
jboard 0.3 89 17405 22.2
jspwiki 2.4 364 83329 126.9
jugjobs alpha 25 4044 18.7
pebble 1.6beta1 234 42542 50.3
personalblog 1.2.6 68 9943 17.6
photov 2.1 129 126886 640.2
roller 0.9.9 276 81171 213.4
snipsnap 1.0beta 488 73295 87.3
webgoat 0.9 35 8474 9.6

there is a significantly larger percentage of rep allocation sites in UT compared to

rep variables.

7.3 SFlow/Integrity

The SFlow/Integrity instantiation of the inference framework, called SFlowInfer

is evaluated on 13 relatively large Java web applications, used in previous work [43,

44, 45]. The benchmarks are listed in Table 7.7.

7.3.1 Experimental Setup

We use the sources and sinks described in detail in Livshits and Lam [43, 73].

In addition, we use 59 sources and sinks in API methods of Struts, Spring, and

Hibernate, discovered as described in Section 6.1.7. There are 3 categories of

sources [43]: Parameter manipulation, Header manipulation, and Cookie poisoning.

There are 4 categories of sinks [43]: SQL injection, HTTP splitting, Cross-site

scripting (XSS), and Path traversal. These sources and sinks are added to the

annotated JDK, Struts, Spring, and Hibernate, which is easily done with the CF.

Once these annotated libraries are created, individual web applications are analyzed

without any input from the user.

115

7.3.2 Inference Result

We run the benchmarks with all 12 configurations. Table 7.7 presents the

sizes of the benchmarks as well as the running times of SFlowInfer in seconds. The

running times attest to efficiency — for all but 1 benchmark, the analysis completes

in less than 4 minutes; we believe that these running times can be improved.

We examined the type errors reported by SFlowInfer, and classified them as

Type-1 (T1), Type-2 (T2), or False-positive (FP). Type-1 errors reflect direct flow

from a source to a sink. The following code, adapted from webgoat, is a Type-1 error

for configuration [Parameter,SQL]:

String u = request.getParameter(‘‘user”); //source
String s = ‘‘SELECT ∗ FROM users WHERE name = ’’ + u;
stat.executeQuery(s); //sink, type error!

Another example of a Type-1 error, adapted from benchmark blueblog, is

shown below. This is a type error for configuration [Parameter,Path]. This example

illustrates a complex flow that goes through heap objects and method calls. It attests

to the power of our analysis.

1 class BBServlet {
2 ...
3 String title = request.getParameter(”title”); //source
4 String content = ...
5 BlogData bd = new BlogData(title, content);
6 currentCategory.addNewBlog(bd);
7 ...
8 }
9 class FSCategory extends Category {

10 ...
11 Blog addNewBlog(BlogData bd) {
12 ...
13 return FSBlog.createNewBlog(...,bd,...);
14 }
15 }
16 class FSBlog extends Blog {
17 static FSBlog createNewBlog(...,BlogData blogData,...) {
18 String filename = blogData.getSuggestedId(); //type error!

19 File file = new File(filename+fileEndings); //sink
20 ...
21 }
22 }

116

23 class BlogData {
24 String title;
25 String suggestedId;
26 BlogData(String title, String content) {
27 this.title = title;
28 this.suggestedId = constructSuggestedId(title);
29 ...
30 }
31 }

Observe the complex flow from the source at line 3 to the sink at line 19. The servlet

creates a new BlogData object, and passes the tainted title to it. Fields title and

suggestedId of the BlogData object store tainted values. The BlogData object is then

passed as argument to addNewBlog in FSCategory (line 6) and then to createNewBlog

in FSBlog (line 13). createNewBlog reads the suggestedId field of the BlogData object

and sends it to the sink. SFlowInfer reports a type error at line 18.

Type-2 errors reflect key-value dependences. The following code, adapted from

personalblog, is a Type-2 error for configuration [Parameter,XSS]:

HashMap map = ...; PrintWriter out = ...;
String id = request.getParameter(‘‘id’’); //source
User user = (User) map.get(id);
out.print(user.getName()); //sink, type error!

The tainted id is used as a key to retrieve the user from the map, then user.getName()

is sent to a safe sink (the parameter of PrintWriter.print). This is a dangerous flow

according to the semantics of noninterference, because the tainted value of the key

affects the value of the safe sink.

We classified as FP all errors that we could not easily identify as Type-1 or

Type-2. The results over the 12 configurations are presented in Table 7.8, Table 7.9

and Table 7.10.

117

T
a
b
le

7
.8

:
In

fe
re

n
ce

re
su

lt
s

fo
r

[P
a
ra

m
e
te
r,

S
Q
L

],
[P

a
ra

m
e
te
r,

X
S
S

],
[P

a
ra

m
e
te
r,

H
T
T
P

]
a
n

d
[P

a
ra

m
e
te
r,

P
a
th

].
T

h
e

m
u
lt

ic
o
lu

m
n
s

sh
o
w

n
u
m

b
e
rs

o
f

T
y
p

e
-1

(T
1
),

T
y
p

e
-2

(T
2
),

a
n
d

F
a
ls

e
-p

o
si

ti
v
e

(F
P

)
ty

p
e

e
rr

o
rs

fo
r

th
e

fo
u
r

co
n
fi
g
u
ra

ti
o
n
s;

n
o
te

th
a
t

a
la

rg
e

n
u
m

b
e
r

o
f

b
e
n
ch

m
a
rk

s
h
a
v
e

0
ty

p
e

e
rr

o
rs

,
i.
e
.,

th
e
y

a
re

p
ro

v
e
n

sa
fe

.

[P
a
ra
m
et
er

,S
Q
L

]
[P
a
ra
m
et
er

,X
S
S

]
[P
a
ra
m
et
er

,H
T
T
P

]
[P
a
ra
m
et
er

,P
a
th

]
B

en
ch

m
ar

k
T

1
T

2
F

P
T

1
T

2
F

P
T

1
T

2
F

P
T

1
T

2
F

P
b

lo
js

om
0

0
0

(
0
%

)
0

0
0

(
0
%

)
1

0
0

(
0
%

)
1
0

1
0

(
0
%

)
b

lu
eb

lo
g

0
0

0
(

0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
3

0
0

(
0
%

)
fr

ik
i

0
0

0
(

0
%

)
0

0
0

(
0
%

)
1

0
9

(9
0
%

)
8

1
0

(
0
%

)
ge

st
cv

1
0

0
(

0
%

)
0

8
2

(2
0
%

)
0

0
0

(
0
%

)
1

0
0

(
0
%

)
jb

oa
rd

3
0

0
(

0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
js

p
w

ik
i

0
0

2
5

(1
0
0
%

)
7
3

1
2

2
0

(1
9
%

)
2
3

0
1
6

(3
4
%

)
7
2

0
2
3

(2
4
%

)
ju

g
jo

b
s

0
0

0
(

0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
p

eb
b

le
0

0
0

(
0
%

)
2

0
0

(
0
%

)
4

0
3

(3
7
%

)
4
3

3
0

(
0
%

)
p

er
so

n
al

b
lo

g
6

0
0

(
0
%

)
3

2
1

2
(

8
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
p

h
ot

ov
46

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
ro

ll
er

0
0

0
(

0
%

)
2
1

2
0

(
0
%

)
1

2
1

(2
5
%

)
0

5
1
9

(7
9
%

)
sn

ip
sn

ap
0

0
3

(1
0
0
%

)
1

0
0

(
0
%

)
6

0
0

(
0
%

)
8

2
6

1
3

(2
8
%

)
w

eb
go

at
10

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
1

0
4

(8
0
%

)
A
v
e
ra

g
e

(
1
5
%

)
(
4
%

)
(
1
4
%

)
(
1
6
%

)

118

T
a
b
le

7
.9

:
In

fe
re

n
ce

re
su

lt
s

fo
r

[H
ea

d
e
r,

S
Q
L

],
[H

ea
d
e
r,

X
S
S

],
[H

ea
d
e
r,

H
T
T
P

]
a
n

d
[H

ea
d
e
r,

P
a
th

].
T

h
e

m
u
lt

ic
o
lu

m
n
s

sh
o
w

n
u
m

b
e
rs

o
f

T
y
p

e
-1

(T
1
),

T
y
p

e
-2

(T
2
),

a
n
d

F
a
ls

e
-p

o
si

ti
v
e

(F
P

)
ty

p
e

e
rr

o
rs

fo
r

th
e

fo
u

r
co

n
fi
g
u
ra

ti
o
n
s.

A
g
a
in

a
la

rg
e

n
u
m

b
e
r

o
f

b
e
n
ch

m
a
rk

s
h
a
v
e

0
ty

p
e

e
rr

o
rs

,
i.

e
.,

th
e
y

a
re

p
ro

v
e
n

sa
fe

.
D

u
e

to
ti

m
e

co
n
st

ra
in

ts
,

w
e

d
id

n
o
t

e
x
a
m

in
e

th
e

ty
p

e
e
rr

o
rs

fo
r

js
p
w

ik
i;

in
st

e
a
d
,

w
e

co
n
se

rv
a
ti

v
e
ly

cl
a
ss

ifi
e
d

th
e
m

a
s

F
a
ls

e
-p

o
si

ti
v
e
.

T
h
e
re

fo
re

,
th

e
a
ct

u
a
l

F
a
ls

e
-p

o
si

ti
v
e

ra
te

is
lo

w
e
r

th
a
n

th
e

o
n
e

re
p

o
rt

e
d

.

[H
ea
d
er

,S
Q
L

]
[H

ea
d
er

,X
S
S

]
[H

ea
d
er

,H
T
T
P

]
[H

ea
d
er

,P
a
th

]
B

en
ch

m
ar

k
T

1
T

2
F

P
T

1
T

2
F

P
T

1
T

2
F

P
T

1
T

2
F

P
b

lo
js

om
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
b

lu
eb

lo
g

0
0

0
(

0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
fr

ik
i

0
0

0
(

0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
3

(1
0
0
%

)
ge

st
cv

0
0

0
(

0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
jb

oa
rd

0
0

0
(

0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
js

p
w

ik
i

0
0

53
?

(1
0
0
%

)
0

0
1
1
3
?

(1
0
0
%

)
0

0
5
0
?

(1
0
0
%

)
0

0
1
5
4
?

(1
0
0
%

)
ju

g
jo

b
s

0
0

0
(

0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
p

eb
b

le
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
p

er
so

n
al

b
lo

g
1

0
0

(
0
%

)
0

1
6

0
(

0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
p

h
ot

ov
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
ro

ll
er

0
0

0
(

0
%

)
1

0
0

(
0
%

)
1

0
0

(
0
%

)
0

0
0

(
0
%

)
sn

ip
sn

ap
0

0
0

(
0
%

)
7

0
0

(
0
%

)
2

0
0

(
0
%

)
0

2
5

5
4

(
6
8
%

)
w

eb
go

at
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
A
v
e
ra

g
e

(
8
%

)
(
8
%

)
(
8
%

)
(
2
1
%

)

119

T
a
b
le

7
.1

0
:

In
fe

re
n
ce

re
su

lt
s

fo
r

[C
o
o
k
ie

,
S
Q
L

],
[C

o
o
k
ie

,
X
S
S

],
[C

o
o
k
ie

,
H
T
T
P

]
a
n

d
[C

o
o
k
ie

,
P
a
th

].
T

h
e

m
u
lt

ic
o
lu

m
n
s

sh
o
w

n
u
m

b
e
rs

o
f

T
y
p

e
-1

(T
1
),

T
y
p

e
-2

(T
2
),

a
n
d

F
a
ls

e
-p

o
si

ti
v
e

(F
P

)
ty

p
e

e
rr

o
rs

fo
r

th
e

fo
u

r
co

n
fi
g
u
ra

ti
o
n
s.

A
g
a
in

,
w

e
co

n
se

rv
a
ti

v
e
ly

cl
a
ss

ifi
e
d

a
ll

e
rr

o
rs

in
js

p
w

ik
i

a
s

F
a
ls

e
-p

o
si

ti
v
e

a
n

d
th

e
a
ct

u
a
l

F
a
ls

e
-

p
o
si

ti
v
e

ra
te

is
lo

w
e
r

th
a
n

th
e

o
n
e

re
p

o
rt

e
d
.

[C
oo
ki
e,
S
Q
L

]
[C
oo
ki
e,
X
S
S

]
[C
oo
ki
e,
H
T
T
P

]
[C
oo
ki
e,
P
a
th

]
B

en
ch

m
ar

k
T

1
T

2
F

P
T

1
T

2
F

P
T

1
T

2
F

P
T

1
T

2
F

P
b

lo
js

om
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
b

lu
eb

lo
g

0
0

0
(

0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
fr

ik
i

0
0

0
(

0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
ge

st
cv

0
0

0
(

0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
jb

oa
rd

0
0

0
(

0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
js

p
w

ik
i

0
0

53
?

(1
0
0
%

)
0

0
1
7
2
?

(1
0
0
%

)
0

0
5
0
?

(1
0
0
%

)
0

0
1
5
5
?

(1
0
0
%

)
ju

g
jo

b
s

0
0

0
(

0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
p

eb
b

le
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
p

er
so

n
al

b
lo

g
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
p

h
ot

ov
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
ro

ll
er

0
0

0
(

0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
1

(1
0
0
%

)
sn

ip
sn

ap
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

1
9

8
(

3
0
%

)
w

eb
go

at
1

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
0

0
0

(
0
%

)
A
v
e
ra

g
e

(
8
%

)
(
8
%

)
(
8
%

)
(
1
8
%

)

120

Table 7.11: Summary of comparison on DroidBench [47] with other taint
analysis tools (

√
= correct warning, × = false warning, © = missed flow).

Tool Name AppScan Source Fortify SCA FlowDroid DroidInfer
Sum, Precision and Recall–excluding implicit flows√

, higher is better 14 17 26 26
×, lower is better 5 4 4 8
©, lower is better 14 11 2 2
Precision p =

√
/(
√

+×) 74% 81% 86% 76%
Recall r =

√
/(
√

+©) 50% 61% 93% 93%
F-measure 2pr/(p + r) 0.60 0.70 0.89 0.84

7.4 SFlow/Confidentiality

The SFlow/Confidentiality instantiation of the inference framework, called

DroidInfer, is evaluated on three sets of Android apps: 1) DroidBench [47], 2)

apps from the official Google Play Store [74], and 3) malware from the contagio

website [75].

7.4.1 DroidBench

We run DroidInfer on DroidBench, which is a suite of 39 Android apps designed

by Fritz et al. [47] for the purpose of evaluating taint analysis for Android. DroidBench

exercises many difficult flows, including flows through fields and method calls, as well

as Android-specific flows. We compare with four other taint analysis tools – AppScan

Source [52], Fortify SCA [53], and FlowDroid [47], using the results presented by

Fritz et al. [47]. Table 7.11 summarizes the comparison. DroidInfer outperforms

AppScan Source and Fortify SCA, which miss substantial amount of flows. The low

recall contributes to the slightly higher precision reported by Fortify SCA. FlowDroid

is slightly more precise than DroidInfer because it uses a flow-sensitive analysis.

DroidBench tests for flow sensitivity and our analysis, which is flow-insensitive,

misses those tests. In our experience with real-world apps however, flow sensitivity

will not help.

7.4.2 Google Play Store

We analyzed 41 free Android apps from the official Google Play Store covering

24 categories. The majority of apps are from the Editor’s Choice list.

121

T
a
b
le

7
.1

2
:

A
ct

u
a
l

fl
o
w

s
in

G
o
o
g
le

P
la

y
S
to

re
sh

o
w

n
a
s

S
o
u
rc

e
→

S
in

k
p
a
ir

s.
T

h
e

n
u

m
b

e
r

in
p

a
re

n
th

e
se

s
is

th
e

n
u
m

b
e
r

o
f

ty
p

e
e
rr

o
rs

re
p

o
rt

e
d

b
y

D
ro

id
In

fe
r

fo
r

th
e

a
p
p
.

T
h
e

m
a
jo

ri
ty

o
f

fl
o
w

s
h

a
p

p
e
n

in
a
d

v
e
rt

is
in

g
li

b
ra

ri
e
s

su
ch

a
s

In
M

o
b
i,

M
il

le
n
ia

l
M

e
d
ia

a
n
d

F
lu

rr
y,

th
a
t

a
re

ca
ll

e
d

fr
o
m

th
e

a
p
p
s.

A
p
p
li
c
a
ti
o
n

D
e
te

c
te

d
L
e
a
k
s

(#
ty

p
e
e
r
r
o
r
s)

R
ea

l
F

in
g
er

p
ri

n
t

(d
x
jl

a
)D

ev
ic

eI
d
→

H
tt

p
E

n
ti

ty
S

ca
n

n
er

(5
)

(p
a
rs

e)
L

o
ca

ti
o
n
→

L
o
g

B
a
n

jo
(4

)
(t

a
p

jo
y
)D

ev
ic

eI
d
→

L
o
g

F
lo

w
F

re
e:

(fl
u

rr
y
)D

ev
ic

eI
d
→

L
o
g

B
ri

d
g
es

(5
)

(fl
u

rr
y
)L

o
ca

ti
o
n
→

L
o
g

C
h

a
se

M
o
b

il
e

(2
)

C
o
n
ta

ct
→

In
te

n
t

M
IT

B
B

S
R

ea
d

er
(i

n
m

o
b

i)
L

o
ca

ti
o
n
→

L
o
g

(1
0
)

(m
il
le

n
n

ia
lm

ed
ia

)D
ev

ic
eI

d
→

L
o
g

(fl
u

rr
y
)L

o
ca

ti
o
n
→

L
o
g

D
ic

ti
o
n

a
ry

.c
o
m

D
ev

ic
eI

d
→

H
tt

p
E

n
ti

ty
(1

3
)

D
ev

ic
eI

d
→

L
o
g

L
o
ca

ti
o
n
→

L
o
g

(a
d

m
a
rv

el
)L

o
ca

ti
o
n
→

W
eb

V
ie

w
(m

il
le

n
n

ia
lm

ed
ia

)D
ev

ic
eI

d
→

L
o
g

(s
es

si
o
n

m
)D

ev
ic

eI
d
→

L
o
g

(u
rb

a
n

a
ir

sh
ip

)L
o
ca

ti
o
n
→

L
o
g

eB
a
y

(4
)

L
o
ca

ti
o
n
→

L
o
g

M
u

lt
i

T
o
u

ch
(i

n
m

o
b

i)
L

o
ca

ti
o
n
→

L
o
g

P
a
in

ti
n

g
D

em
o

(m
il
le

n
n

ia
lm

ed
ia

)D
ev

ic
eI

d
→

L
o
g

(5
)

(fl
u

rr
y
)L

o
ca

ti
o
n
→

L
o
g

E
S

T
a
sk

M
a
n

a
g
er

(1
)

D
ev

ic
eI

d
→

In
te

n
t

F
a
ce

b
o
o
k

L
o
ca

ti
o
n
→

L
o
g

(4
)

P
h

o
n

eN
u

m
b

er
→

In
te

n
t

P
o
o
l

B
il
li
a
rd

s
P

ro
(d

o
o
d

le
m

o
b

il
e)

D
ev

ic
eI

d
→

L
o
g

(4
)

(fl
u

rr
y
)L

o
ca

ti
o
n
→

H
tt

p
E

n
ti

ty
te

x
tP

lu
s

F
re

e
D

ev
ic

eI
d
→

L
o
g

T
ex

t
+

C
a
ll
s

P
h

o
n

eN
u

m
b

er
→

In
te

n
t

(1
9
)

P
h

o
n

eN
u

m
b

er
→

H
tt

p
E

n
ti

ty
P

h
o
n

eN
u

m
b

er
→

L
o
g

S
m

sM
es

sa
g
e→

L
o
g

C
o
n
ta

ct
→

L
o
g

(t
a
p

jo
y
)D

ev
ic

eI
d
→

L
o
g

(t
a
p

jo
y
)L

o
ca

ti
o
n
→

L
o
g

(t
a
p

jo
y
)L

o
ca

ti
o
n
→

W
eb

V
ie

w
N

Y
T

im
es

(4
)

(m
ed

ia
le

ts
)L

o
ca

ti
o
n
→

L
o
g

(m
ed

ia
le

ts
)L

o
ca

ti
o
n
→

W
eb

V
ie

w

A
p
p
li
c
a
ti
o
n

D
e
te

c
te

d
L
e
a
k
s

(#
ty

p
e
e
r
r
o
r
s)

S
o
li
ta

ir
e

(t
a
p

jo
y
)D

ev
ic

eI
d
→

L
o
g

(1
3
)

(fl
u

rr
y
)D

ev
ic

eI
d
→

L
o
g

(fl
u

rr
y
)L

o
ca

ti
o
n
→

H
tt

p
E

n
ti

ty
(m

o
p

u
b

)L
o
ca

ti
o
n
→

L
o
g

(m
o
p

u
b

)L
o
ca

ti
o
n
→

W
eb

V
ie

w
(t

re
m

o
rv

id
eo

)L
o
ca

ti
o
n
→

In
te

n
t

J
o
b

S
ea

rc
h

(1
)

L
o
ca

ti
o
n
→

L
o
g

V
ir

tu
a
l

P
et

C
a
re

(2
)

(m
o
p

u
b

)L
o
ca

ti
o
n
→

L
o
g

P
a
n

d
o
ra

in
te

rn
et

ra
d

io
(2

)
(a

d
m

a
rv

el
)L

o
ca

ti
o
n
→

W
eb

V
ie

w
P

ri
ce

li
n

e
H

o
te

ls
C

o
n
ta

ct
→

In
te

n
t

&
T

ra
v
el

L
o
ca

ti
o
n
→

L
o
g

(7
)

(A
d

X
)D

ev
ic

eI
d
→

L
o
g

(s
k
y
h

o
o
k
w

ir
el

es
s)

L
o
ca

ti
o
n
→

L
o
g

(s
k
y
h

o
o
k
w

ir
el

es
s)

D
ev

ic
eI

d
→

L
o
g

B
a
ck

g
ro

u
n

d
s

D
ev

ic
eI

d
→

H
tt

p
E

n
ti

ty
H

D
W

a
ll
p

a
p

er
s

D
ev

ic
eI

d
→

W
eb

V
ie

w
(3

)
C

o
n
ta

ct
→

L
o
g

U
b

er
(5

)
L

o
ca

ti
o
n
→

L
o
g

T
h

e
W

ea
th

er
C

h
a
n

n
el

L
o
ca

ti
o
n
→

L
o
g

(7
)

(s
es

si
o
n

m
)D

ev
ic

eI
d
→

L
o
g

(s
es

si
o
n

m
)L

o
ca

ti
o
n
→

L
o
g

N
o
o
m

W
ei

g
h
t

D
ev

ic
eI

d
→

H
tt

p
E

n
ti

ty
L

o
ss

C
o
a
ch

L
o
ca

ti
o
n
→

H
tt

p
E

n
ti

ty
(9

)
L

o
ca

ti
o
n
→

L
o
g

(m
o
p

u
b

)L
o
ca

ti
o
n
→

W
eb

V
ie

w
(fl

u
rr

y
)D

ev
ic

eI
d
→

L
o
g

(fl
u

rr
y
)L

o
ca

ti
o
n
→

H
tt

p
E

n
ti

ty
Z

il
lo

w
R

ea
l

E
st

a
te

D
ev

ic
eI

d
→

L
o
g

&
R

en
ta

ls
P

h
o
n

eN
u

m
b

er
→

W
eb

V
ie

w
(6

)
L

o
ca

ti
o
n
→

L
o
g

(fi
k
su

)D
ev

ic
eI

d
→

L
o
g

Z
E

D
G

E
C

o
n
ta

ct
→

In
te

n
t

(6
)

(m
o
p

u
b

)L
o
ca

ti
o
n
→

L
o
g

(fl
u

rr
y
)D

ev
ic

eI
d
→

L
o
g

(fl
u

rr
y
)L

o
ca

ti
o
n
→

L
o
g

122

!"#$%&'(
)*"+&,#-.&$((!"#$%&'()*)+,!-&./012*$$!3#$4'5&(61*).*7&)$$!8#$9)2:(;<(=*!$$

!>>#$?@,*AB$!/+0'(
123)"!45!&46+748((

A>CD$A;9)2E*0)*!=$

!3$$!F#$E0=GH0<$$!8$$
B;9)2E*0)*!=$ A;9)2E*0)*!$

!8$$!I#$%&'()*)+,!-&./012*$$!*,2!&#?@,*AB$$!8$$
B;9)2E*0)*!=$B>CD$$ A;H*==0.*$ B;H*==0.*$

!>>$$

Figure 7.6: A PhoneNumber→HttpEntity flow detected by DroidInfer
in the textFree app. 99K denotes a flow from the left side to the right
side. [f denotes a write into field f and]f denotes a read from field f.
The PhoneNumber is encoded in r8, which is written under key 137 in
HashMap mPduHeaders, a field of r2. r2 is passed to the constructor of r9,
where the mPduHeaders field is retrieved and assigned to field mPduHeader
of r9. Later, the value of 137 is retrieved, appended to field mMessage of
r9, which eventually is read, converted to a byte array, and sent to the
HttpEntity sink. Flows r2 99K r9 and r9 99K r11 have corresponding method
summary constraints r2 <: r9 and r9 <: r11; the flows are explained in the
red ovals.

DroidInfer identified sources and sinks in 29 apps and reported 143 type errors

over 25 apps. We inspected all type errors and confirmed 108 errors as actual flows

from a source to a sink. This amounts to a false positive rate of 24%. To inspect, we

used a tracing tool (still under development), which recorded the changes to the sets

of types during type inference. Consider the leak in Figure 7.6. DroidInfer reported

a type error at call r6 = tm.getLine1Number(), where the right-hand-side is inferred

{tainted} (the return value of getLine1Number() is a source) and the left-hand-side

is inferred {safe}. The tracing tool revealed the flow that caused the error, shown

in Figure 7.6, which we confirmed by looking at the Jimple files. This flow clearly

shows the power of DroidInfer — it involves dozens of method calls and field accesses,

and spans half a dozen files. We identified and confirmed numerous such complex

flows.

The analysis result is summarized in Table 7.12. In many cases DeviceId or

Location, unencrypted, flows to Logs or the Network; we believe the purpose of these

flows is tracking, in lieu of cookies.

123

Table 7.13: Leaks detected in Malware.

Application Detected Leaks
(#type errors)

DroidKungFu (1) DeviceId→HttpEntity
Fakedaum SimSerialNumber→HttpEntity
(3) PhoneNumber→HttpEntity

SmsMessage→HttpEntity
Godwon DeviceId→HttpEntity
(5) PhoneNumber→HttpEntity

SmsMessage→HttpEntity
Jollyserv DeviceId→sendTextMessage
(2) PhoneNumber→HttpEntity
Roidsec PhoneNumber→Socket OutputStream
(4) Location→Socket OutputSteam

Contact→Socket OutputStream
DeviceId→Socket OutputStream

DroidInfer takes 86 seconds per app on average. It takes less than 2 minutes

on 31 of the 41 apps and takes at most 5 minutes on all apps.

We ran FlowDroid, the only other publicly available taint analysis tool, on 7

apps. It threw an Out-of-memory exception on 5 of the apps. Max heap size was set

to 6GB. We have confirmed with the developers of FlowDroid that it requires more

than 6GB of memory.

7.4.3 Malware

We analyzed 5 known malicious apps from the contagio website [75]. Table 7.13

summarizes the analysis result. These 5 applications send out phone state (e.g.

DeviceId, SimSerialNumber, and PhoneNumber), SMS messages, and/or location

information through HTTP/text messages, or write into a socket.

CHAPTER 8

Related Work

8.1 Type Inference and Checking Frameworks

There are several existing pluggable type frameworks for creating and checking

custom pluggable type systems: Polyglot [76], JQual [77], JastAdd [78], JavaCOP [79,

80] and the Checker Framework [18, 14].

8.1.1 Polyglot

The Polyglot framework is a compiler front end for Java. It implements an

extensible compiler for Java 1.4 and a programmer who wants to implement a

language extension (e.g. a pluggable type system) may extend the framework to

define to the compilation process, including the Abstract Syntax Tree (AST) and

semantic analysis [76]. Polyglot has been used to implement a number of Java

extensions, including Jif [81], Soot [67], X10 [3], and more (see [82]).

Language extensions in Polyglot are implemented by extending the Java’s

grammar, type system and defining new code transformation. This process builds a

compiler that reads the original program and outputs the transformed Java source

code, which can be compiled by the standard Java compiler. Therefore, it is possible

that the runtime behavior of the transformed program is different from the original

one.

Polyglot is more suitable for building a complex language extension than

implementing a pluggable type system. The runtime behavior of the transformed

program by Polyglot may have changed when the language extension is added, which

is not expected for pluggable types as they should not affect the runtime behavior of

the original program.

8.1.2 JastAdd

JastAdd is a Java compiler that is easy to extend with new analysis as well as

new language constructs [78]. The combination of object-orientation with declarative

124

125

attributes and context-dependent rewrites allows highly modular specifications [83].

It can implement all language features of Java 5 as modular extensions to Java 1.4.

Also, a non-null checker can be included as a pluggable component.

Programmers need to specify four principal parts to build a component: an

abstract grammar defining the structure of the AST, behavior specifications defining

the behavior of the AST, a context-free grammar defining how text is parsed into

ASTs, and a main program for generating output based on the above three parts [78].

Building a pluggable type system on JastAdd requires a type system designer to

have substantial knowledge of parsing, abstract syntax trees and symbol tables. Also,

the runtime behavior of the transformed program by JastAdd may have changed as

with Polyglot, which is not expected for pluggable types.

8.1.3 JQual

JQual is a framework for inferring user-defined type qualifiers in Java [77]. It

is the only framework among all surveyed ones, that studies inference of qualifiers,

in addition to checking. JQual is effective for source-sink type systems, for which

programmers need to add annotations to the sources and sinks, and then JQual infers

the intermediate annotations for the rest of the program and checks their consistency.

Greenfieldboyce and Foster present two applications using JQual: inferring opaque,

transparent, and enumi qualifiers in code that uses the JNI, and inferring readonly in

a range of Java programs [77].

The input of JQual is a set of source files and a configuration file describing

the order among the type qualifiers. Then JQual parses the source code, and

generates and solves type constraints using CQual’s back-end [84]. Users can choose

whether to enable field sensitivity, context sensitivity, both, or neither when they run

JQual. However, it is not scalable in these modes according to the authors. Artzi

et al.’s evaluation confirms this [85]. In field-insensitive mode, JQual suffers from

the problem that the method receiver has to be mutable when the method reads

a mutable field, even if the method itself does not mutate any program state. In

contrast, our analysis is scalable and may even scale better than Javarifier. JQual

requires source code for all necessary classes because it is a whole-program analysis,

126

while our analysis is modular and can analyze any given set of classes.

JQual focuses more on type inference than type-checking for pluggable types.

It focuses on type systems containing a single type qualifier that induces either a

supertype or a subtype of the unqualified type [18]. In contrast, our framework works

not only with context-sensitive source-sink type systems, but with other complex

systems such as Ownership Types and Universe Types.

8.1.4 JavaCOP

JavaCOP is a program constraint system for implementing pluggable type

systems for Java [79, 80]. User-defined typing constraints are written in a declarative

and expressive rule language. A pluggable type system is implemented as a set of

rules, which constrain programs via the AST representation [80]. JavaCOP then

translates these rules into regular Java code, which enforces the rules during a

depth-first traversal of the AST.

The following rule from [79] shows how JavaCOP declaratively enforces the

right-hand-side expression of each assignment to be nonnull if the left-hand-side is

nonnull.

rule checkNonNull(Assign a) {
where(requiresNonNull(a.lhs)) {
require(definitelyNotNull(a.rhs)):

error(a,”Possible null assignment” + ” to @NonNull”);

}
}

The rule relies on two user-defined predicates. The requiresNonNull predicate checks

that the given variable or field was declared with the @NonNull attribute. The

definitelyNotNull predicate inspects the given expression to determine if it is definitely

nonnull.

JavaCOP is able to express a number of interesting type systems, including

confined types [12], scoped types [13], types for race detection [86], nonnull types,

types for immutability [6], and generic ownership types [87]. Several style and

convention checkers, including an EJB3.0 verifier, as well as various code pattern

127

detectors and metrics tools are also implemented in JavaCOP [79]. In contrast, our

framework focuses on type inference for context-sensitive pluggable types.

8.1.5 Checker Framework

The Checker Framework supports writing and checking pluggable type systems

for Java [18, 14]. It includes the syntax in Java 8 [2] for expressing type qualifiers.

A type system designer can define new type qualifiers and their semantics in a

declarative and/or procedural manner. A type checker is created by the Checker

Framework as a compiler plug-in. It is well-integrated with the Java language and

toolset [18].

Implementing a type system requires four components:

(1) Type qualifiers and hierarchy. A type system designer needs to provide

all qualifiers and their subytyping relation for the type system.

(2) Type introduction rules. Default type for a variable needs to be specified.

If the variable is not annotated by the programmer, then it takes the default

type qualifier.

(3) Type rules. The designer needs to write the typing rules for checking correct-

ness.

(4) Interface to the compiler. The compiler interface indicates which annota-

tions are part of the type system, the checker-specific compiler command-line

options, etc.

8.2 Reference Immutability Systems

We begin by comparison of ReIm with Javari [6] and its inference tool Javari-

fier [16], which represent the state-of-the-art in reference immutability. Although

the type systems have similarities, they also differ in important points of design and

implementation. The corresponding inference tools implement substantially different

inference algorithms. Section 8.2.1 compares ReIm with Javari, and Section 8.2.2

compares our inference approach, ReImInfer, with Javarifier. Section 8.2.3 discusses

related work on purity inference, and Section 8.2.4 discusses other related work.

128

8.2.1 Comparison with Javari

There are two essential differences between ReIm and Javari [6]. First, Javari

allows programmers to exclude fields from the abstract state by designating fields

as assignable or mutable. Such a field may be assigned or mutated even through

a readonly reference. An example is a field used for caching (e.g., hashCode) —

modifying it should not be considered mutation from the client’s point of view. As

expected however, this expressive power complicates Javari: to prevent converting

an immutable reference to a mutable reference, Javari requires the access to an

assignable field through a readonly reference, to have different mutabilities depending

on whether it is an l-value or an r-value of an assignment expression. ReIm does

not allow assignable or mutable fields and therefore it is less expressive but simpler.

This decision is motivated by our intended application: purity inference. Including

assignable and assignable for fields in the type system would have complicated purity

inference. In addition, the maximal typing would not type-check if we allowed

mutable fields.

Second, Javari treats generics and arrays differently. Javari permits annotating

the type arguments when instantiating a parametric class: a programmer can express

designs such as “readonly list of readonly elements”, “readonly list of mutable ele-

ments”, “mutable list of readonly elements”, and “mutable list of mutable elements”.

ReIm does not support annotations on the type arguments when instantiating a

parametric class, and can express only “readonly list of readonly elements” and

“mutable list of mutable elements” (which it uses to approximate the two inexpressible

designs). The difference between the two approaches is illustrated by the following

example:

void m(List<Date> lst2) {
lst2.get(0).setHours(1);
}

Here Javari’s inference tool (Javarifier) infers that reference lst2 is of type readonly

List<mutable Date>. ReImInfer annotates lst2 as mutable List<Date>. (Javarifier

does not have an option to make it prefer the solution mutable List<mutable Date>

over readonly List<mutable Date>.) Again, the primary motivation for the decision

about ReIm’s simpler design is the application we had in mind: purity inference.

129

Purity is a single bit that summarizes whether any reachable datum may be modified,

and finer-grained information is not of use when computing whether a method is

pure.

Arrays are treated similarly to generics in Javari and its inference tool. In the

following code b would be annotated as mutable Date readonly [].

void m(Date[] b) {
b[0].setHours(2);
}

Again, Javari and Javarifier permit a programmer to give the array and its elements

either the same or different mutability annotations. ReIm and ReImInfer enforce

that the array and its elements have the same mutability annotation, so the array

reference b would be inferred as mutable Date mutable [] due to the mutation of

element 0.

One might imagine inferring method purity from Javarifier’s output, as follows:

a method is pure if all the mutabilites of its formal parameters and static variables,

and their type arguments and array elements, are readonly. This approach is sound

but can be unnecessarily conservative, in certain circumstances. A concrete example

is when the type argument is not part of the state of the object but is mutated.

Consider the following example:

class A<T> {
T id(T p) { return p; }
}

void m(A<Date> x) {
Date d = x.id(new Date());
d.setHours(0);
}

Here Javarifier infers that x is of type readonly A<mutable Date>. Using the proposed

approach, method m would be conservatively marked as non-pure. By contrast,

ReImInfer annotates x as readonly, so m is inferred to be pure.

8.2.2 Comparison with Javarifier

Our inference approach is comparable to Javarifier, the inference tool of Javari.

Both tools use flow-insensitive and context-sensitive analysis and solve constraints

130

generated during type-based analysis. There are three substantial differences between

the tools.

The most significant difference is in the context-sensitive handling of methods.

The main idea of Javarifier is to create two context copies for each method that returns

a reference, one copy for the case when the left-hand-side of the call assignment

is mutable, and another copy for the case when the left-hand-side is readonly. As

a result, Javarifier doubles the total number of method-local references, including

local variables, return values, formal parameters and implicit parameters this. It

also doubles the number of constraints. In contrast, our inference uses polyread

and viewpoint adaptation, which efficiently captures and propagates dependences

from parameters to return values in the callee, to the caller. For example, in m()

{ x = this.f; y = x.g; return y; }, the polyread of the return value is propagated to

implicit parameter this; the dependence is transferred to the callers when viewpoint

adaptation is applied at the call sites of m.

Second, Javarifier and ReImInfer have different constraint resolution approaches.

Javarifier computes graph reachability over the constraint graph. Its duplication

of nodes in its constraint graph correctly handles context sensitivity. In contrast,

ReImInfer uses fixpoint iteration on the set-based solution and outputs the final

typing based on the preference ranking over the qualifiers.

Third, Javarifier is based on Soot [67] while ReImInfer is based on the Checker

Framework (CF), which did not yet exist when Javarifier was developed. Javari’s

type-checker is completely separate code from Javarifier, and Javarifier also requires

an additional utility to map the inference result back to the source code in order

to do type-checking. In total, Javari and Javarifier depend on three tools: Soot,

the annotation utility, and the Checker Framework. In contrast, ReImInfer and the

type-checker require only the Checker Framework and the annotation utility. These

differences contribute to the usability of ReImInfer.

We conjecture that viewpoint adaptation, the constraint resolution approach,

and the better infrastructure in the CF, contribute to the better scalability of

ReImInfer compared to Javarifier.

131

8.2.3 Purity

Sălcianu and Rinard present a Java Pointer and Purity Analysis tool (JPPA)

for reference immutability inference and purity inference. Their analysis is built on

top of a combined pointer and escape analysis. Their analysis not only infers the

immutability, but also the safety for parameters, which means the abstract state

referred by a safe parameter will not be exposed to externally visible heap inside the

method. However, the pointer and escape analysis is more expensive. It relies on

whole program analysis, which requires main, and analyzes only methods reachable

from main. ReImInfer does not require the whole program and thus it can be applied

to libraries. Plus, we also include a type checker for verifying the inference result,

which is not available in JPPA.

JPure [71] is a modular purity system for Java. The way JPure infers method

purity is not based on reference immutability inference, as our purity inference and

JPPA did. Instead, it exploits two properties, freshness and locality, for purity

analysis. Its modular analysis enables inferring method purity on libraries and gains

efficient runtime performance.

Rountev’s analysis is designed to work on incomplete programs using fragment

analysis by creating an artificial main routine [88]. However, its definition of pure

method is more restricted in that it disallows a pure method to create and use a

temporary object.

Clausen develops Cream, an optimizer for Java bytecode using an inter-

procedural side-effect analysis [23]. It infers an instruction or a collection of instruc-

tions as pure, read-only, write-only or read/write, based on which it can infer purity

for methods, loops and instructions. It is a whole-program analysis which requires a

main method and also, unused methods are not covered.

Other researchers also explore the dynamic notion of purity. Dallmeier de-

velops a tool, also called JPURE, to dynamically infer pure methods for Java [89].

The analysis calculates the set of modified objects for each method invocation and

determines impure methods by checking if they write non-local visible objects. Xu

et al. use both static and dynamic approaches to analyze method purity in Java

programs [90]. Their implementation supports different purity definitions that range

132

from strong to weak. The dynamic approach depends on the runtime behavior of

programs, which is totally different from our purity analysis.

8.2.4 Other Related Work on Reference Immutability

Artzi et al. present Pidasa for classifying parameter reference immutability [91,

85]. They combine dynamic analysis and static analysis in different stages, each of

which refines the result from the previous stage. The resulting analysis is scalable

and produces precise result. They also incorporate optional unsound heuristics for

improving precision. In contrast, our analysis is entirely static and it also infers

immutability types for fields and method return values. It is unclear how their

analysis handles polymorphism of methods.

The IGJ [22] and OIGJ [92] type systems support both reference immutability

(a la Javari and ReIm) and also object immutability. Concurrent work by Haack

et al. [93] also supports object immutability.

Porat et al. [94] present an analysis that detects immutable static fields and also

addresses sealing/encapsulation. Their analysis is context-insensitive and libraries

are not analyzed. Liu and Milanova [95] describe field immutability in the context of

UML. Their work incorporates limited context sensitivity, analyzes large libraries

and focuses on instance fields. This work is an improvement over [95]. Immutability

inference not only includes instance fields, but also local variables, return values,

formal parameters, and this parameters. Also, this work provides a type checker to

verify the correctness of the inference result.

8.3 Ownership Type Systems

Several dynamic approaches for ownership inference exist [19, 96, 97, 98].

Although a dynamic approach may produce more precise results, it is inherently

unsound and incurs a significant performance overhead. Also, it is difficult to

generalize a dynamic approach to different type systems. In contrast, our approach

is static and can be applied to multiple type systems.

Aldrich et al. [99] present an ownership type system and a type inference

algorithm. Their inference creates equality, component and instantiation constraints

133

and solves these constraints. Our inference solves different kinds of constraints,

namely subtyping and adapt constraints.

Ma and Foster [100] propose Uno, a static analysis for automatically inferring

ownership, uniqueness, and other aliasing and encapsulation properties in Java. Uno

infers “stricter” ownership in which an owned object can only be accessed by its

owner. Our inference has a less-restrictive ownership model. Uno’s inference is

based on Soot and it is difficult to map the inference results back to the source

code, subsequently inhibiting type-checking. Our type inference is integrated into

the Checker Framework; we perform type-checking as well.

Dietl et al. [17] present a tunable static inference for Generic Universe Types

(GUT). Constraints of GUT are encoded as a boolean satisfiability problem, which

is solved by a weighted Max-SAT solver. The inference is tunable in the sense

that programmers can direct the inference by setting different weights or partially

annotating the source code. In contrast, our inference can only be tuned by accepting

programmers’ manual annotations. However, by defining a ranking over typings,

we avoid the exponential SAT solver and manage to scale to larger programs. A

detailed comparison is left as future work.

Milanova and Vitek [69] present a static dominance inference analysis, based on

which they perform Ownership Type inference. Our current work is an improvement

over [69]. First, it accepts manual annotations to direct the inference, while [69] does

not. Second, it provides optimality guarantees, while the inference in [69] does not

provide guarantees — in theory, it may end up with a solution which produces a flat

ownership tree. Third, our work includes a type checker which is not available in

[69], and it works on more and larger benchmarks.

Sergey and Clark [40] introduce the notion of gradual ownership types and

a corresponding consistent-subtyping relation. Their formalism provides a static

guarantee of ownership invariants for fully annotated programs, but requires dynamic

checks for partially-annotated programs. Their prototype works on non-generic Java

programs and they analyzed 8,200 lines of code. In contrast, our inference is static

and works on Java programs of up to 110kLOC.

134

8.4 Information Flow Systems

8.4.1 Taint Analysis for Web Applications

The most closely related to ours is the work by Shankar et al. [49]. They

present a type system for detecting string format vulnerabilities in C programs. The

type system has two type qualifiers, tainted and untainted; polymorphism is not part

of the core system. They include a type inference engine built on top of CQual [101].

CQual relies on dependence graphs built using points-to analysis. In contrast, SFlow

and SFlowInfer handle polymorphism naturally, as it is built into the type system

using the poly qualifier and viewpoint adaptation. In addition, we compose with

reference immutability, thus improving precision significantly. SFlow and SFlowInfer

handle reflection and frameworks seamlessly.

Tripp et al. [44] present TAJ, a points-to-based taint analysis for industrial

applications. TAJ is a dataflow and points-to-based analysis. In contrast, our

type-based taint analysis is modular and compositional. In order to handle Struts,

TAJ treats all Action classes as entry points. In addition, it simulates the passing of

all subclasses of ActionForm to Action.execute, by generating a constructor, which

assigns tainted values to all fields of the subclasses. In contrast, our inference analysis

handles Struts by annotating the ActionForm parameter of Action.execute as tainted.

Our handling is simpler and equally precise. Finally, TAJ approximates the behavior

of Java reflection APIs by synthesizing an abstract object whenever the instantiated

class can be inferred. It is unclear how TAJ handles reflection when the instantiated

class cannot be inferred (e.g. the argument is not a string constant). According

to Sridharan et al. [45], TAJ’s reflection modeling is not scalable. In contrast, our

type-based analysis does not need abstract objects, and handles reflection seamlessly

and safely.

Livshits and Lam [43] present a static analysis based on a scalable and precise

points-to analysis. The analysis is built on top of a context-sensitive Java points-to

analysis [102] based on Binary Decision Diagrams (BDDs). In contrast, our inference

analysis is type-based and modular. In order to handle reflection, they look for all

calls to Class.forName(s) that may return className, then find all constant strings

that s may refer to, and finally augment the call graph by adding an edge from the

135

call site of newInstance to new S(), which is represented by s. Similarly to TAJ, they

handle reflection by trying to infer the value of string s at forName(s).newInstance()

calls. In addition, Livshits and Lam’s analysis does not handle frameworks, which

are essential for web applications.

Sridharan et al. [45] present F4F, a system for taint analysis of framework-

based web applications. In order to handle frameworks, F4F analyzes the application

code and XML configuration files to construct a specification, which summarizes

reflection and callback-driven behavior. In contrast, our analysis handles frameworks

by inferring or adding annotations to sources and sinks in the frameworks, which

propagate to user code through subtyping. Tripp et al. [46] present ANDROMEDA,

a demand-driven analysis that improves on F4F.

Volpano et al. [103] and Myers [81] present type systems for secure information

flow. These systems are substantially more complex than SFlow. They focus on type-

checking and do not include type inference or include only local (intra-procedural)

type inference. In contrast, SFlowInfer handles large web applications.

Snelting et al. [104], Hammer et al. [105, 106], and Giffhorn and Hammer [107]

present information flow analysis based on Program Dependence Graphs (PDGs).

Their analysis relies on highly precise context-sensitive dataflow and points-to analy-

sis.

The Checker Framework [18] includes a Tainting Checker [108] which prevents

certain kinds of trust errors. The type system of the Tainting Checker is very similar

to SFlow/Integrity. However, type inference is not available in the Tainting Checker.

Therefore, programmers have to explicitly annotate variables that are tainted. In

contrast, programmers only need to specify the sources and the sinks, and our

inference framework fills the rest or reports type errors if there are flow violations. In

addition, our inference also composes with ReIm to improve the typing precision.

8.4.2 Android Malware Analysis

There is a large amount of work on Android malware analysis, both dynamic

and static. We focus the discussion on static analysis.

LeakMiner [64] is a points-to based static analysis for Android. It models

136

the Android lifecycle to handle callback methods. However, LeakMiner is context-

insensitive which may lead to a number of false positives in practice. It is unclear

whether LeakMiner supports inter-component communications. In contrast, DroidIn-

fer is a context-sensitive type-based static analysis and it handles inter-component

communication. LeakMiner is not publicly available therefore we could not perform

a direct comparison.

SCANDAL [65] is a static analyzer that detects privacy leaks in Android Apps.

It directly processes Dalvik bytecode by translating the bytecode into Dalvik Core,

an intermediate language designed by the SCANDAL authors. SCANDAL is limited

by a high false positive rate — the average false positive rate is about 55% according

to the result in [65], excluding the unknown paths which make up more than half

of the total paths. In contrast, DroidInfer is based on Soot and Dexpler which first

transforms Dalvik bytecode into Java bytecode and then to Jimple code. DroidInfer

appears to be more precise — the average false positive rate is 24%. In addition,

SCANDAL is Samsung proprietary and unavailable to us for comparison.

AndroidLeaks [66] finds potential leaks of private information in Android Apps.

It uses WALA to construct a context-sensitive System Dependence Graph (SDG) and

a context-insensitive overlay for tracking heap dependencies in SDG. It lacks field

sensitivity because it taints whole objects that have tainted data stored inside them.

In contrast, DroidInfer is type-based and does not need abstraction of heap objects.

In addition, DroidInfer is field-sensitive and is more precise than AndroidLeaks.

AndroidLeaksis not publicly available.

CHEX [63] can automatically vet Android apps for component hijacking vul-

nerabilities. It models the vulnerabilities from a data-flow analysis perspective and

detects possible hijack-enabling flows. CHEX can also detect private data leakage.

To avoid the complexity of analyzing the Android framework library, CHEX models

the Android framework. In contrast, DroidInfer detects private data leaks in Android

Apps. And it handles Android library methods differently by making reasonable

assumptions.

FlowDroid [47] is a context-, object- and flow-sensitive taint analysis for

Android. It models Android’s lifecycle to handle callbacks. In contrast, DroidInfer

137

is type-based, and it handles callbacks with function subtyping. FlowDroid does

not handle ICC, while DroidInfer does. Also, FlowDroid handles library calls by

using manual summaries, while we make conservative assumptions for libraries. As

discussed in Section 7.4, FlowDroid is incomparable to DroidInfer, because it uses a

larger set of sources and sinks [109].

SCanDroid [110] focuses on ICC. It formalizes the data flows through and

across components in a core calculus. Epicc [111] discovers ICC for Android apps by

identifying a specification for every ICC source and sink, including the ICC Intent

action, data type, category, etc. We plan to integrate Epicc in DroidInfer, which will

provide more channels for privacy leaks.

8.5 Other Related Work

Work on introducing generics to Java [112, 113] solves similar challenges,

because leaving every type as raw is a legal typing, but a useless one that expresses

no design intent and detects no coding errors. In contrast to our work, Donovan

et al. [112] use heuristics to find desirable solutions and their inference requires a

pointer analysis. Kieżun et al. [113] make use of type constraints to ensure behavior

preservation. They also use heuristics, otherwise user’s input is required.

Our algorithm for computing the set-based solution (Section 2.3) is similar

to the algorithm used by Tip et al. [113, 114]. Both algorithms start with sets

containing all possible answers and iteratively remove elements that are inconsistent

with the typing rules. Our work differs as we introduce a ranking over valid typings

and use the ranking to guide the automatic inference towards a final “best” typing.

Our work, as well as [114], falls in the category of type-based and constraint-

based analysis, originally proposed by Palsberg and Schwartzbach [115].

CHAPTER 9

Conclusion and Future Work

Mandatory typing does not always guarantee that “well-typed” programs will not

go wrong, because most built-in mandatory type systems do not enforce some

important program properties for the languages. On the other hand, pluggable types

enforces many important program properties. However, most pluggable type systems

require annotations in the source code and the annotation burden may inhibit the

adoption of pluggable types in practice. In this thesis, we have proposed an inference

and checking framework, for specifying, inferring, and checking of context-sensitive

pluggable types.

9.1 Inference and Checking Framework

We have presented an inference and checking framework for context-sensitive

pluggable types. By supplying five framework parameters: (1) type qualifiers, (2)

subtyping relation, (3) viewpoint adaptation rules, (4) context of adaptation, and (5)

additional constraints, programmers can instantiate the framework’s unified typing

rules into concrete ones for a specific type system. The framework then takes as

input an unannotated or a partially annotated program, and infers the most desirable

typing (according to the objective function defined by the programmer), and verifies

the correctness of the typing. As a result, programmers do not need to annotate

every variable in their program. Instead, they can choose to annotate only variables

they care about, or none, and the framework infers the rest. Programmers can use

the framework to not only infer and plug existing type systems, but also build new

type systems.

9.2 Instantiations of Pluggable Type Systems

In this thesis, we have presented five instantiations of the inference and checking

framework, including the reference immutability type system ReIm, the classical

Ownership Types, Universe Types, the information flow integrity type system

138

139

SFlow/Integrity, and its dual confidentiality type system SFlow/Confidentiality.

Note that, other than the type systems presented in this thesis, we have also

instantiated the inference and checking framework with AJ [9], EnerJ [11], and more.

For each of these instantiated type systems, we have evaluated the corresponding

type inference and type checking extensively by a number of small-to-large Java and

Android applications. The evaluations show that our unified type inference approach

is general enough to handle different type systems, but also customizable to handle

specific features of the type systems. The inference results indicate that our inference

approach is both scalable and precise.

9.3 Future Work

One direction of future work is to instantiate the framework with more inter-

esting type systems, such as nonnull references [4], interning types [14], and more.

These type systems are very useful, as they can prevent unforeseen runtime errors.

However, extensive annotation burden has inhibited their practical adoption. We

believe that with our inference and checking framework, programmers can benefit

from these type systems with little or no annotation burden.

Another direction of future work is to further investigate the theory behind the

framework. For example, the problem of extracting the “best” valid typing from the

set-based solution needs further investigation. Currently we use the maximal typing

with the extension of method summary constraints. In the future, we may want to

study other extraction techniques for efficiently extracting the “best” typing.

Finally, we want to integrate our inference analysis with the Checker Frame-

work [18] as a plug-in. With the release of Java 8, more and more programmers will

start writing checkers for their programmers using the Checker Framework. However,

there is no built-in type inference in the Checker Framework and programmers may

have to write a sizable amount of annotations. Since our type inference is built upon

the Checker Framework, it should be easily adapted into the Checker Framework as

a plug-in.

BIBLIOGRAPHY

[1] G. Bracha, “Pluggable type systems,” in Proc. Workshop Revival of Dynamic
Languages, Vancouver, Canada, 2004, pp. 1–6.

[2] M. D. Ernst. (2014, Jan. 11). Type Annotations (JSR 308) and the Checker
Framework [Online]. Available: http://types.cs.washington.edu/jsr308/
(Retrieved on Mar. 27, 2014).

[3] T. Wrigstad et al., “Integrating typed and untyped code in a scripting
language,” in Proc. ACM SIGPLAN-SIGACT Symp. Principles of
Programming Languages, Madrid, Spain, 2010, pp. 377–388.

[4] M. Fähndrich and K. R. M. Leino, “Declaring and checking non-null types in
an object-oriented language,” in Proc. ACM SIGPLAN Conf. Object-Oriented
Programming, Systems, Languages, and Applications, Anaheim, CA, 2003, pp.
302–312.

[5] J. Boyland et al., “Capabilities for sharing: A generalisation of uniqueness and
Read-Only,” in Proc. European Conf. Object-Oriented Programming,
Budapest, Hungary, 2001, pp. 2–27.

[6] M. S. Tschantz and M. D. Ernst, “Javari: Adding reference immutability to
Java,” in Proc. ACM SIGPLAN Conf. Object-Oriented Programming, Systems,
Languages, and Applications, San Diego, CA, 2005, pp. 211–230.

[7] D. Clarke et al., “Ownership types for flexible alias protection,” in Proc. ACM
SIGPLAN Conf. Object-Oriented Programming, Systems, Languages, and
Applications, Vancouver, Canada, 1998, pp. 48–64.

[8] W. Dietl and P. Müller, “Universes: Lightweight ownership for JML,” J. of
Object Technology, vol. 4, no. 8, pp. 5–32, Oct. 2005.

[9] M. Vaziri et al., “A type system for data-centric synchronization,” in Proc.
European Conf. Object-Oriented Programming, Maribor, Slovenia, 2010, pp.
304–328.

[10] J. Dolby et al., “A data-centric approach to synchronization,” ACM Trans.
Programming Languages and Syst., vol. 34, no. 1, pp. 1–48, Apr. 2012.

[11] A. Sampson et al., “EnerJ: Approximate data types for safe and general
low-power computation,” in Proc. ACM SIGPLAN Conf. Programming
Language Design and Implementation, San Jose, CA, 2011, pp. 164–174.

140

141

[12] J. Vitek and B. Bokowski, “Confined types,” in Proc. ACM SIGPLAN Conf.
Object-Oriented Programming, Systems, Languages, and Applications, Denver,
CO, 1999, pp. 82–96.

[13] T. Zhao et al., “Scoped types for real-time Java,” in Proc. IEEE Real-Time
System Symp., Lisbon, Portugal, 2004, pp. 241–251.

[14] W. Dietl et al., “Building and using pluggable type-checkers,” in Proc. Int.
Conf. Software Engineering, Honolulu, HI, 2011, pp. 681–690.

[15] W. Huang et al., “ReIm & ReImInfer: Checking and inference of reference
immutability and method purity,” in Proc. ACM SIGPLAN Conf.
Object-Oriented Programming, Systems, Languages, and Applications, Tucson,
AZ, 2012, pp. 879–896.

[16] J. Quinonez et al., “Inference of reference immutability,” in Proc. European
Conf. Object-Oriented Programming, Paphos, Cyprus, 2008, pp. 616–641.

[17] W. Dietl et al., “Tunable static inference for generic universe types,” in Proc.
European Conf. Object-Oriented Programming, Lancaster, UK, 2011, pp.
333–357.

[18] M. M. Papi et al., “Practical pluggable types for Java,” in Proc. Int. Symp.
Software Testing and Analysis, Seattle, WA, 2008, pp. 201–212.

[19] W. Dietl and P. Müller, “Runtime universe type inference,” in Proc. Int.
Workshop Aliasing, Confinement and Ownership in Object-Oriented
Programming, Berlin, Germany, 2007, pp. 72–80.

[20] D. Cunningham et al., “Universe types for topology and encapsulation,” in
Proc. Formal Methods for Components and Objects, Sophia Antipolis, France,
2008, pp. 72–112.

[21] F. Nielson et al., Principles of Program Analysis. Berlin, Germany:
Springer-Verlag, 1999.

[22] Y. Zibin et al., “Object and reference immutability using Java generics,” in
Proc. Joint Meeting of European Software Engineering Conf. and ACM
SIGSOFT Symp. Foundations of Software Engineering, Dubrovnik, Croatia,
2007, pp. 75–84.

[23] L. R. Clausen, “A Java bytecode optimizer using side-effect analysis,”
Concurrency and Computation: Practice and Experience, vol. 9, no. 11, pp.
1031–1045, Nov. 1997.

[24] A. Le et al., “Using inter-procedural side-effect information in JIT
optimizations,” in Proc. Int. Conf. Compiler Construction, Edinburgh, UK,
2005, pp. 287–304.

142

[25] J. Zhao et al., “Pure method analysis within Jikes RVM,” in Proc. Int.
Workshop Implementation, Compilation, Optimization of Object-Oriented
Languages, Programs and Systems, Paphos, Cyprus, 2008, pp. 1–8.

[26] O. Tkachuk and M. B. Dwyer, “Adapting side effects analysis for modular
program model checking,” in Proc. Joint Meeting of European Software
Engineering Conf. and ACM SIGSOFT Symp. Foundations of Software
Engineering, Helsinki, Finland, 2003, pp. 188–197.

[27] W. Huang et al., “Inference and checking of object ownership,” in Proc.
European Conf. Object-Oriented Programming, Beijing, China, 2012, pp.
181–206.

[28] A. Heydon et al., “Caching function calls using precise dependencies,” in Proc.
ACM SIGPLAN Conf. Programming Language Design and Implementation,
Vancouver, Canada, 2000, pp. 311–320.

[29] A. Sălcianu and M. Rinard, “Purity and side effect analysis for Java
programs,” in Proc. Int. Conf. Verification, Model Checking, and Abstract
Interpretation, Paris, France, 2005, pp. 199–215.

[30] E. C. Chan et al., “Promises: Limited specifications for analysis and
manipulation,” in Proc. Int. Conf. Software Engineering, Kyoto, Japan, 1998,
pp. 167–176.

[31] P. Müller, Modular specification and verification of object-oriented programs.
Berlin, Germany: Springer-Verlag, 2002.

[32] K. R. M. Leino, “Data groups: Specifying the modification of extended state,”
in Proc. ACM SIGPLAN Conf. Object-Oriented Programming, Systems,
Languages, and Applications, Vancouver, Canada, 1998, pp. 144–153.

[33] J. Hogg et al., “The Geneva convention on the treatment of object aliasing,”
ACM SIGPLAN OOPS Messenger, vol. 3, no. 2, pp. 11–16, Apr. 1992.

[34] C. Boyapati et al., “Ownership types for safe programming: Preventing data
races and deadlocks,” in Proc. ACM SIGPLAN Conf. Object-Oriented
Programming, Systems, Languages, and Applications, Seattle, WA, 2002, pp.
211–230.

[35] A. Milanova and W. Huang, “Static object race detection,” in Proc. Asian
Conf. Programming Languages and Systems, Kenting, Taiwan, 2011, pp.
255–271.

[36] S. Negara et al., “Inferring ownership transfer for efficient message passing,”
in Proc. ACM SIGPLAN Symp. Principles and Practice of Parallel
Programming, San Antonio, TX, 2011, pp. 81–90.

143

[37] K. R. M. Leino and P. Müller, “Object invariants in dynamic contexts,” in
Proc. European Conf. Object-Oriented Programming, Oslo, Norway, 2004, pp.
491–515.

[38] C. Boyapati et al., “Ownership types for object encapsulation,” in Proc. ACM
SIGPLAN-SIGACT Symp. Principles of Programming Languages, New
Orleans, LA, 2003, pp. 213–223.

[39] J. Noble et al., “Flexible alias protection,” in Proc. ACM SIGPLAN Conf.
Object-Oriented Programming, Systems, Languages, and Applications,
Vancouver, Canada, 1998, pp. 1–28.

[40] I. Sergey and D. Clarke, “Gradual ownership types,” in Proc. European Symp.
Programming, Tallinn, Estonia, 2012, pp. 579–599.

[41] W. Huang et al., “Type-based taint analysis for Java web application,” in Int.
Conf. Fundamental Approaches to Software Engineering, Grenoble, France,
2014, pp. 140–154.

[42] OWASP. (2014, Mar. 21). OWASP Top Ten Project [Online]. Available:
https://www.owasp.org/index.php/Top Ten (Retrieved on Mar. 21, 2014).

[43] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in Java
applications with static analysis,” in Proc. USENIX Security Symp.,
Baltimore, MD, 2005, pp. 271–286.

[44] O. Tripp et al., “TAJ : Effective taint analysis of web application,” in Proc.
ACM SIGPLAN Conf. Programming Language Design and Implementation,
Dublin, Ireland, 2009, pp. 87–97.

[45] M. Sridharan et al., “F4F : Taint analysis of framework-based web
application,” in Proc. ACM SIGPLAN Conf. Object-Oriented Programming,
Systems, Languages, and Applications, Portland, OR, 2011, pp. 1053–1068.

[46] O. Tripp et al., “ANDROMEDA: Accurate and scalable security analysis of
web applications,” in Int. Conf. Fundamental Approaches to Software
Engineering, Rome, Italy, 2013, pp. 210–225.

[47] C. Fritz et al., “Highly precise taint analysis for Android application,” Dept.
Comput. Sci., Tech. Univ. of Darmstadt, Darmstadt, Germany, Tech. Rep.
TUD-CS-2013-0113, 2013.

[48] A. C. Myers et al., “Parameterized types for Java,” in Proc. ACM
SIGPLAN-SIGACT Symp. Principles of Programming Languages, Paris,
France, 1997, pp. 132–145.

[49] U. Shankar et al., “Detecting format string vulnerabilities with type qualifiers,”
in Proc. USENIX Security Symp., Washington, D.C., 2001, pp. 201–220.

144

[50] B. Steensgaard, “Points-to analysis in almost linear time,” in Proc. ACM
SIGPLAN-SIGACT Symp. Principles of Programming Languages, St.
Petersburg Beach, FL, 1996, pp. 32–41.

[51] L. O. Andersen, “Program analysis and specialization for the C programming
language,” Ph.D. dissertation, Dept. Comput. Sci., Univ. of Copenhagen,
Copenhagen, Denmark, 1994.

[52] IBM. (2014, Mar. 2). IBM Security AppScan [Online]. Available:
http://www-03.ibm.com/software/products/en/appscan/ (Retrieved on Mar.
26, 2014).

[53] HP. (2014, Mar. 14). Application Security: HP Fortify end to end software
security for the new style of IT [Online]. Available:
http://www8.hp.com/us/en/software-solutions/application-security/
(Retrieved on Mar. 23, 2014).

[54] A. Milanova and W. Huang, “Dataflow and type-based formulations for
reference immutability,” in Proc. Workshop Formal Techniques for Java-like
Programs, Montpellier, France, 2013, pp. 5:1–5:7.

[55] A. Milanova et al., “Parameterized object sensitivity for points-to analysis for
Java,” ACM Trans. Software Eng. and Methodology, vol. 14, no. 1, pp. 1–41,
Jan. 2005.

[56] Engadget. (2013, Oct. 31). Android tops 81 percent of smartphone market
share in Q3 [Online]. Available: http:
//www.engadget.com/2013/10/31/strategy-analytics-q3-2013-phone-share/
(Retrieved on Mar. 23, 2014).

[57] F-Secure. (2013, Oct. 13). Mobile Threat Report [Online]. Available:
http://www.f-secure.com/static/doc/labs global/Research/
Mobile Threat Report Q3 2013.pdf (Retrieved on Mar. 26, 2014).

[58] Google. (2012, Feb. 2). Android and Security [Online]. Available:
http://googlemobile.blogspot.com/2012/02/android-and-security.html
(Retrieved on Mar. 26, 2014).

[59] W. Enck et al., “TaintDroid : An information-flow tracking system for realtime
privacy monitoring on smartphones,” in Proc. USENIX Conf. Operating
System Design and Implementation, Vancouver, Canada, 2010, pp. 1–6.

[60] L. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os and dalvik
semantic views for dynamic android malware analysis,” in Proc. USENIX
Security Symp., Bellevue, WA, 2012, pp. 569–584.

145

[61] A. Reina et al., “A system call-centric analysis and stimulation technique to
automatically reconstruct Android malware behaviors,” in Proc. European
Workshop System Security, Prague, Czech Republic, 2013, pp. 1–6.

[62] R. Xu et al., “Aurasium: Practical policy enforcement for Android application,”
in Proc. USENIX Security Symp., Bellevue, WA, 2012, pp. 539–552.

[63] L. Lu et al., “CHEX : Statically vetting Android apps for component hijacking
vulnerabilities categories and subject descriptors,” in Proc. ACM Conf.
Computer and Communications Security, Raleigh, NC, 2012, pp. 229–240.

[64] Z. Yang and M. Yang, “LeakMiner: Detect information leakage on Android
with static taint analysis,” in Proc. World Congr. Software Engineering,
Wuhan, China, 2012, pp. 101–104.

[65] J. Kim et al., “SCANDAL: Static analyzer for detecting privacy leaks in
Android application,” in Proc. Mobile Security Technologies, San Francisco,
CA, 2012, pp. 1–10.

[66] C. Gibler et al., “AndroidLeaks: Automatically detecting potential privacy
leaks in Android application on a large scale,” in Proc. Int. Conf. Trust and
Trustworthy Computing, Vienna, Austria, 2012, pp. 291–307.

[67] R. Vallée-Rai et al., “Soot: A Java bytecode optimization framework,” in Proc.
Conf. Centre for Advanced Studies on Collaborative Research, Mississauga,
Canada, 1999, pp. 13–23.

[68] A. Bartel et al., “Dexpler: Converting Android dalvik bytecode to jimple for
static analysis with Soot,” in Proc. ACM SIGPLAN Int. Workshop State of
the Art in Java Program Analysis, Beijing, China, 2012, pp. 27–38.

[69] A. Milanova and J. Vitek, “Static dominance inference,” in Proc. Int. Conf.
Objects, Models, Components and Patterns, Zurich, Switzerland, 2011, pp.
211–227.

[70] M. Barnett et al., “99.44% pure: Useful abstractions in specifications,” in
Proc. Workshop Formal Techniques for Java-like Programs, Oslo, Norway,
2004, pp. 11–19.

[71] D. Pearce, “JPure: A modular purity system for Java,” in Proc. Int. Conf.
Compiler Construction, Saarbrucken, Germany, 2011, pp. 104–123.

[72] W. Huang and A. Milanova, “Towards effective inference and checking of
ownership types,” in Proc. Int. Workshop Aliasing, Confinement and
Ownership in Object-Oriented Programming, Lancaster, UK, 2011, pp. 1–11.

146

[73] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in Java
applications with static analysis,” Dept. Comput. Sci., Stanford Univ.,
Stanford, CA, Tech. Rep. SU-CS-2005-01, 2005.

[74] Google. (2014, Mar. 24). Google Play Store [Online]. Available:
https://play.google.com (Retrieved on Mar. 24, 2014).

[75] Mila. (2014, Mar. 22). Contagio mobile [Online]. Available:
http://contagiominidump.blogspot.com (Retrieved on Mar. 22, 2014).

[76] N. Nystrom et al., “Polyglot: An extensible compiler framework for Java,” in
Proc. Int. Conf. Compiler Construction, Warsaw, Poland, 2003, pp. 138–152.

[77] D. Greenfieldboyce and J. S. Foster, “Type qualifier inference for java,” in
Proc. ACM SIGPLAN Conf. Object-Oriented Programming, Systems,
Languages, and Applications, Montreal, Canada, 2007, pp. 321–336.

[78] T. Ekman and G. Hedin, “The Jastadd extensible Java compiler,” in Proc.
ACM SIGPLAN Conf. Object-Oriented Programming, Systems, Languages,
and Applications, Montreal, Canada, 2007, pp. 1–18.

[79] C. Andreae et al., “A framework for implementing pluggable type systems,” in
Proc. ACM SIGPLAN Conf. Object-Oriented Programming, Systems,
Languages, and Applications, Portland, OR, 2006, pp. 57–74.

[80] S. Markstrum et al., “JavaCOP: Declarative pluggable types for Java,” ACM
Trans. Programming Languages and Syst., vol. 32, no. 2, pp. 1–37, Jan. 2010.

[81] A. C. Myers, “JFlow: Practical mostly-static information flow control,” in
Proc. ACM SIGPLAN-SIGACT Symp. Principles of Programming Languages,
San Antonio, TX, 1999, pp. 228–241.

[82] N. Nystrom et al. (2013, June 21). Polyglot: A compiler front end framework
for building Java language extensions [Online]. Available:
http://www.cs.cornell.edu/Projects/polyglot/ (Retrieved on Mar. 24, 2014).

[83] T. Ekman and G. Hedin, “Pluggable checking and inferencing of nonnull types
for Java,” J. of Object Technology, vol. 6, no. 9, pp. 455–475, Oct. 2007.

[84] J. S. Foster et al., “Flow-insensitive type qualifiers,” ACM Trans.
Programming Languages and Syst., vol. 28, no. 6, pp. 1035–1087, Nov. 2006.

[85] S. Artzi et al., “Parameter reference immutability: Formal definition, inference
tool, and comparison,” Automated Software Eng., vol. 16, no. 1, pp. 145–192,
Dec. 2009.

[86] C. Flanagan and S. N. Freund, “Type-based race detection for Java,” in Proc.
ACM SIGPLAN Conf. Programming Language Design and Implementation,
Vancouver, Canada, 2000, pp. 219–232.

147

[87] A. Potanin et al., “Generic ownership for generic Java,” in Proc. ACM
SIGPLAN Conf. Object-Oriented Programming, Systems, Languages, and
Applications, Portland, OR, 2006, pp. 311–324.

[88] A. Rountev, “Precise identification of side-effect-free methods in Java,” in
Proc. IEEE Int. Conf. Software Maintenance, Chicago, IL, 2004, pp. 82–91.

[89] V. Dallmeier, “Static vs. dynamic purity analysis,” Dept. Comput. Sci.,
Saarland Univ., Saarbrucken, Germany, Tech. Rep. SU-CS-2013-012, 2007.

[90] H. Xu et al., “Dynamic purity analysis for Java programs,” in Proc. Workshop
Program Analysis for Software Tools and Engineering, San Diego, CA, 2007,
pp. 75–82.

[91] S. Artzi et al., “Combined static and dynamic mutability analysis,” in Proc.
Int. Conf. Automated Software Engineering, Atlanta, GA, 2007, pp. 104–113.

[92] Y. Zibin et al., “Ownership and immutability in generic Java,” in Proc. ACM
SIGPLAN Conf. Object-Oriented Programming, Systems, Languages, and
Applications, Reno, NV, 2010, pp. 598–617.

[93] C. Haack et al., “Immutable objects for a Java-like language,” in Proc.
European Symp. Programming, Braga, Portugal, 2007, pp. 347–362.

[94] S. Porat et al., “Automatic detection of immutable fields in Java,” in Proc.
Centre for Advanced Studies on Collaborative Research, Mississauga, Canada,
2000, pp. 10–24.

[95] Y. Liu and A. Milanova, “Ownership and immutability inference for
UML-based object access control,” in Proc. Int. Conf. Software Engineering,
Minneapolis, MN, 2007, pp. 323–332.

[96] N. Mitchell, “The runtime structure of object ownership,” in Proc. European
Conf. Object-Oriented Programming, Nantes, France, 2006, pp. 74–98.

[97] A. Potanin et al., “Checking ownership and confinement,” Concurrency and
Computation: Practice and Experience, vol. 16, no. 7, pp. 671–687, Jun. 2004.

[98] M. Vechev et al., “PHALANX: Parallel checking of expressive heap assertions,”
in Proc. Int. Symp. Memory Management, Toronto, Canada, 2010, pp. 41–50.

[99] J. Aldrich et al., “Alias annotations for program understanding,” in Proc.
ACM SIGPLAN Conf. Object-Oriented Programming, Systems, Languages,
and Applications, Seattle, WA, 2002, pp. 311–330.

[100] K.-K. Ma and J. S. Foster, “Inferring aliasing and encapsulation properties for
java,” in Proc. ACM SIGPLAN Conf. Object-Oriented Programming, Systems,
Languages, and Applications, Montreal, Canada, 2007, pp. 423–440.

148

[101] J. S. Foster et al., “A theory of type qualifiers,” in Proc. ACM SIGPLAN
Conf. Programming Language Design and Implementation, Atlanta, GA, 1999,
pp. 192–203.

[102] J. Whaley and M. S. Lam, “Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams,” in Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation, Washington, D.C., 2004,
pp. 131–144.

[103] D. Volpano et al., “A sound type system for secure flow analysis,” J. of
Comput. Security, vol. 4, no. 2-3, pp. 167–187, Jan. 1996.

[104] G. Snelting et al., “Efficient path conditions in dependence graphs for software
safety analysis,” ACM Trans. Software Eng. and Methodology, vol. 15, no. 4,
pp. 410–457, Oct. 2006.

[105] C. Hammer et al., “Intransitive noninterference in dependence graphs,” in
Proc. Int. Symp. Leveraging Applications of Formal Methods, Verification and
Validation, Paphos, Cyprus, 2006, pp. 119–128.

[106] C. Hammer et al., “Static path conditions for Java,” in Proc. Workshop
Programming Languages and Analysis for Security, Tucson, AZ, 2008, pp.
57–66.

[107] D. Giffhorn and C. Hammer, “Precise analysis of Java programs using
JOANA,” in Proc. IEEE Int. Workshop Source Code Analysis and
Manipulation, Beijing, China, 2008, pp. 267–268.

[108] U. of Washington. (2014, Mar. 1). The Checker Framework Manual: Custom
pluggable types for Java [Online]. Available: http:
//types.cs.washington.edu/checker-framework/current/checkers-manual.html
(Retrieved on Mar. 20, 2014).

[109] S. Rasthofer et al., “A machine-learning approach for classifying and
categorizing Android sources and sinks,” in Proc. Symp. Network and
Distributed System Security, San Diego, CA, 2014, pp. 1–15.

[110] A. P. Fuchs et al., “SCanDroid : Automated security certification of Android
application,” unpublished.

[111] D. Octeau et al., “Effective inter-component communication mapping in
Android with Epicc: An essential step towards holistic security analysis,” in
Proc. USENIX Security Symp., Washington, D.C., 2013, pp. 543–558.

[112] A. Donovan et al., “Converting Java programs to use generic libraries,” in
Proc. ACM SIGPLAN Conf. Object-Oriented Programming, Systems,
Languages, and Applications, Vancouver, Canada, 2004, pp. 15–34.

149

[113] A. Kieżun et al., “Refactoring for parameterizing Java classes,” in Proc. Int.
Conf. Software Engineering, Minneapolis, MN, 2007, pp. 437–446.

[114] F. Tip et al., “Refactoring using type constraints,” ACM Trans. Programming
Languages and Syst., vol. 33, no. 3, pp. 9:1–9:47, May 2011.

[115] J. Palsberg and M. I. Schwartzbach, Object-Oriented Type System. Hoboken,
NJ: Wiley, 1994.

