
Towards Effective Inference and Checking of
Ownership Types

Wei Huang and Ana Milanova

Rensselaer Polytechnic Institute, Troy NY, USA

Abstract. We present a checker for the owner-as-dominator type sys-
tem. We add a flow analysis which performs type inference. Our checker
allows programmers to annotate a subset of the variables, fields and/or
allocation sites; the flow analysis fills in the remaining annotations, and
the type checker checks the program. We have type checked two relatively
large programs, javad and SPECjbb and present inference and checking
results.

1 Introduction

Object-oriented languages such as Java only provide name-based mechanisms
for protecting an object’s internal representations. In practice, however, this
mechanism is not strong enough. For example, the method Class.getSigners() in
Java 1.1 returns a reference to an internal array. Although the array is protected
by the private keyword, clients can still modify it, leading to security problems.

On the other hand, ownership is a control-based protection mechanism. It
enforces that only the owner can have full control of (known as owner-as-
dominator) or modify (known as owner-as-modifier) its owned object. There
are many ownership type systems in the literature; however, practical adoption
is lacking. One reason is that these ownership type systems have a disadvantage
— the annotation requirement. Programmers have to put significant effort into
annotating new or existing software systems in order to realize the benefits of
ownership.

In previous work we have addressed the problem of ownership inference [8,
10]. However, inferred ownership is not checked by a type checker, and it is
difficult to verify the correctness of the inferred annotations. In this work, we
build a type checker on top of the Checker Framework [12], for the classical
owner-as-dominator type system from [3] restricted to one ownership parameter.
We go beyond a simple type checker and add a flow analysis which performs type
inference. Our checker allows programmers to annotate any subset of fields, locals
or allocation sites; the flow analysis fills in the remaining annotations, and the
type checker checks the program.

2 Type System

The type annotation 〈q0|q1〉 of our type system consists of two parts: q0 is the
owner of the object and q1 is the ownership parameter passed to that object.

2 Wei Huang and Ana Milanova

An annotated field or local variable is written as 〈q0|q1〉 C x and allocation site
new 〈q0|q1〉 C(). q0 and q1 can be one of the following values: rep, own, and p.
rep denotes the object is owned by this and belongs to this’s representation; own
denotes the object is owned by the owner of this (note that for brevity we use
own instead of owner as in [3]); and p denotes the object’s owner is the ownership
parameter of this.

(tnew)

T (x) = t C

T ` x = new t C

(tassign)

T (x) = t C T (y) = t C

T ` x = y
(twrite)

x 6= this T (x) = tx C typeof(C.f) = tf D
T (y) = ty D adapt(tf , tx) = ty

T ` x.f = y

(twritethis)

T (this) = t′ C typeof(C.f) = t D
T (y) = t D

T ` this.f = y

(tread)

y 6= this T (y) = ty C typeof(C.f) = tf D
T (x) = tx D adapt(tf , ty) = tx

T ` x = y.f

(treadthis)

T (this) = t′ C typeof(C.f) = t D
T (x) = t D

T ` x = this.f

(tcall)

T (y) = ty C typeof(C.m) = t D → t′ D′

y 6= this T (x) = tx D′ T (z) = tz D
adapt(t, ty) = tz adapt(t′, ty) = tx

T ` x = y.m(z)

(tcallthis)

T (this) = t′′ C

typeof(C.m) = t D → t′ D′

T (x) = t′ D′ T (z) = t D

T ` x = this.m(z)

Fig. 1. Typing Rules

Fig. 1 shows the typing rules (see [10] for additional details). T is a type
mapping from variables to the annotated types; t C is an annotated type, in
which t can be 〈rep|rep〉, 〈rep|own〉, 〈rep|p〉, 〈own|own〉, 〈own|p〉 or 〈p|p〉; typeof
is a primitive that given a method or field name returns respectively, the method
or field type. To better illustrate inference and checking, we ignore features such
as static methods and static fields; they will be discussed in Section 5.

Viewpoint adaptation, exemplified in work on Universe types [5], is used
to adapt ownership type tin from the point of view of ownership type trcv.
adapt(tin, trcv) returns the type tout. Here, tin denotes the annotated type of
a variable inside its enclosing object, trcv denotes the receiver whose fields/pa-
rameters are being adapted, and tout denotes the adapted ownership type from
outside of the receiver. adapt is defined below:

adapt(〈own|own〉, 〈q0|q1〉) = 〈q0|q0〉
adapt(〈own|p〉, 〈q0|q1〉) = 〈q0|q1〉
adapt(〈p|p〉, 〈q0|q1〉) = 〈q1|q1〉

Towards Effective Inference and Checking of Ownership Types 3

1 class Link <p> {
2 <own|p> Link next;
3 <p|p> X data;
4 Link(<p|p> X d1) {
5 next = null;
6 data = d1;
7 }
8 }
9 class XStack <p> {

10 <rep|p> Link top;
11 XStack () { top = null; }
12 void push(<p|p> X d2) {

13 <rep|p> Link newTop = new <rep|p> Link(d2); n

14 newTop.next = top;
15 top = newTop;
16 }
17 <p|p> X pop() {
18 <rep|p> Link oldTop = top;
19 top = oldTop.next;
20 return oldTop.data;
21 }
22 boolean isEmpty () { return top == null; }
23 public static void main(String [] args) {

24 <rep|rep > XStack s = new <rep|rep > XStack (); s

25 <rep|rep > X x = new <rep|rep > X(); x

26 s.push(x);
27 }
28 }

Fig. 2. XStack example

Note that adapt is partially defined. The first argument cannot contain rep which
accounts for static visibility [3]. Otherwise, it will be considered as illegal and
the adapt will fail.

This system simplifies [3] as it restricts the number of ownership parameters
to one. It uses A-normal form Java syntax, and also we have taken the liberty
to use adapt instead of substitution function σ, as adapt was somewhat more
intuitive to us.

Fig. 2 shows a fully annotated and type checked XStack example, which is
rephrased from [3]. The checking process is straightforward in this fully anno-
tated program, as in most cases we only check if the types of both sides are
compatible for each assignment. In order to check newTop.next = top, how-
ever, we need to use the viewpoint adaptation function. Because newTop has
type 〈rep|p〉 and next has type 〈own|p〉, the result of the viewpoint adaptation
adapt(〈own|p〉, 〈rep|p〉) = 〈rep|p〉 is exactly the type of top.

3 Flow Analysis

Our type checker works on fully annotated programs, as well as partially an-
notated programs. We believe that neither fully automatic inference or fully

4 Wei Huang and Ana Milanova

manual annotating are feasible choices. We envision that programmers should
provide a small set of annotations on the fields, locals and/or allocation sites
that they care about, and let the system fill in the remaining annotations and
type check the program. However, a program may have many feasible ownership
typings. For instance, a flat ownership structure is one of the possible typings.
One major challenge for ownership inference is that there is no notion of an op-
timal typing. We refer readers to our ongoing work on optimality of ownership
type inference [7]. In this work, we conjecture that the checker should infer own-
ership types that respect dominance as much as possible. Currently, we provide
annotations on all allocation sites; in the future, we plan to extend our system
and experiment with different settings.

3.1 Type Mapping

First we define an annotation mapping T from keys to values. The keys in
the mapping are (1) variables, including method parameters, (2) field names,
(3) allocation site indices and (4) method names used for return types. The
values in the mapping are sets of possible type annotations. For instance, T (x) =
{〈own|own〉, 〈own|p〉} means the annotation of variable x can be one of 〈own|own〉
or 〈own|p〉. For the rest of the paper we use “variables” to refer to all kinds of
keys: variables, fields, allocation sites, and method names.

T is initialized as follows. Programmer-annotated variables are initialized to
the programmer-provided annotation. In our running example, allocation site n
is annotated by the user as 〈rep|p〉 and therefore T (n) = {〈rep|p〉}. Variables
that are not annotated are initialized to the maximal set of annotations U ,
i.e., T (x) = {〈rep|rep〉, 〈rep|own〉, 〈rep|p〉, 〈own|own〉, 〈own|p〉, 〈p|p〉}. Static fields,
variables of boxed primitive types, string type, as well as variables defined in
libraries receive special default annotations which we will discuss later in the
paper. The flow analysis iterates over the statements in the program and refines
the initial sets until it reaches a fixpoint.

3.2 Transfer Functions

Now we describe the transfer functions which take as input the above defined
type mapping T and output an updated type mapping T ′. First, we define three
adapt functions that act on sets:

Adaptout(Sin, Srcv) = {tout | tout = adapt(tin, trcv) where tin ∈ Sin, trcv ∈ Srcv}
Adaptrcv(Sout, Sin) = {trcv | tout = adapt(tin, trcv) where tout ∈ Sout, tin ∈ Sin}
Adaptin(Sout, Srcv) = {tin | tout = adapt(tin, trcv) where tout ∈ Sout, trcv ∈ Srcv}

What the above functions do is infer the third annotation based on the other
two. The first function, Adaptout, extends adapt to act on sets in a straight-
forward manner: it returns all types tout that can be derived from the sets Sin

and Srcv. The second and third functions, Adaptrcv and Adaptin are essentially
inverses of adapt that act on sets. Adaptrcv takes as arguments the outside set

Towards Effective Inference and Checking of Ownership Types 5

Sout and the inside set Sin, and returns the receiver set Srcv. Similarly, Adaptin
takes as arguments the outside set Sout and the receiver set Srcv, and returns
the inside set Sin.

Based on these Adapt functions, we can define the transfer functions on the
kinds of statements shown in Fig. 1.

1. x = newj C()
f1(T) = T ′ = [x 7→ S][j 7→ S] T

where S = T (x)∩T (j). The transfer function takes as argument the current
mapping T and returns a new mapping T ′. T ′ differs from T only in the
mappings for x and j: the sets of x and allocation site j are unified by taking
the intersection of the current sets.

2. x = y
f2(T) = T ′ = [x 7→ S][y 7→ S] T

where S = T (x)∩T (y). The transfer function takes as argument the current
mapping T and returns a new mapping T ′. Again, T ′ differs from T only in
the mappings for x and y: the sets of x and y are unified.

3. x.f = y and y = x.f

f3(T) = T ′ = [y 7→ S′′][f 7→ S][x 7→ S′] T

where S′′ = Adaptout(T (f), T (x)) ∩ T (y), S = Adaptin(S′′, T (x)) ∩ T (f),
S′ = Adaptrcv(S′′, S) ∩ T (x). The transfer function first unifies the type of
the left-hand-site with the type of the right-hand-side to compute set S′′.
Subsequently, it refines the type for f and the type for x based on S′′.
In our running example, consider applying this transfer function to new-
Top.next = top at line 14. Assume T (newTop) = {〈rep|p〉}, T (next) = U and
T (top) = U . Adaptout(U, 〈rep|p〉) = {〈rep|rep〉, 〈rep|p〉, 〈p|p〉} (recall that
adapt restricts the first argument to only three possible values). Therefore,
S′′ = {〈rep|rep〉, 〈rep|p〉, 〈p|p〉}. S = Adaptin(S′′, {〈rep|p〉}) ∩ T (next) =
{〈own|own〉, 〈own|p〉, 〈p|p〉}. Finally, S′ = Adaptrcv(S′′, S) ∩ T (newTop) =
{〈rep|p〉}. Therefore, the result of the application is T ′(newTop) = {〈rep|p〉},
T ′(next) = {〈own|own〉, 〈own|p〉, 〈p|p〉} and T ′(top) = {〈rep|rep〉, 〈rep|p〉, 〈p|p〉}.

4. this.f = y and y = this.f

f4(T) = T ′ = [y 7→ S][f 7→ S] T

where S = T (f) ∩ T (y). No viewpoint adaptation is needed.
Consider applying the transfer function to top = newTop at line 15. As a
result T ′(top) = {〈rep|p〉}. Applying f3 on newTop.next = top in a subsequent
iteration refines the set for next to {〈own|p〉}.

5. x = y.m(z)
Let m(p) be the compile-time target at call x = y.m(z), and let z = z1, . . . , zn
and p = p1, . . . , pn.

f5(T) = T ′ = [zi 7→ Szi][pi 7→ Spi][x 7→ Sx][m 7→ Sm][y 7→ Sy] T

6 Wei Huang and Ana Milanova

where Szi = Adaptout(T (pi), T (y))∩T (zi), Spi = Adaptin(Szi , T (y))∩T (pi),
Sx = Adaptout(T (m), T (y)) ∩ T (x), Sm = Adaptin(Sx, T (y)) ∩ T (m), and
Sy = (∩i=1...nAdaptrcv(Spi , Szi)) ∩Adaptrcv(Sm, Sx) ∩ T (y).
This function performs viewpoint adaptation by refining the annotation sets
for triple y, m, x, and also for each triple y, pi, zi.

6. x = this.m(z)
Again, let m(p) be the compile-time target at call x = this.m(z), and let
z = z1, . . . , zn and p = p1, . . . , pn.

f6(T) = T ′ = [zi 7→ Si][pi 7→ Si][x 7→ S][m 7→ S] T

where Si = T (pi) ∩ T (zi) and S = T (x) ∩ T (m).

3.3 Fixpoint Iteration

The flow analysis is a fixpoint iteration that works as follows: it first initializes
the mapping T as described earlier in this section, and keeps iterating over the
program with the above defined transfer functions until one of the following
happens: (1) T reaches a fixpoint, i.e., T remains unchanged from the previous
iteration, in which case the analysis terminates successfully, or (2) a key gets
assigned the empty set, in which case the analysis terminates with an error.

The algorithm terminates. For each transfer function fi, we have T ′(x) ⊆ T (x)
for an arbitrary key x. As a result, T changes at most O(n ∗ |U |) = O(n) times
where n is the total number of keys, and U is the maximal set of annotations.
Since there areO(n) statements, the overall complexity of the algorithm isO(n2).

4 Type Checking

The type checker can perform type checking of fully annotated programs as well
as partially annotated programs. It takes as input the partially annotated source,
applies the flow analysis described in the previous section, and type checks with
the result of the inference. Note, however, that the result of our inference is a
mapping from variables to sets of types, not to a single type. When performing
type checking, our checker picks the most specific (i.e., smallest) type in the set
according to the following ordering:

〈rep|rep〉 < 〈rep|own〉 < 〈rep|p〉 < 〈own|own〉 < 〈own|p〉 < 〈p|p〉

Unfortunately however, this heuristic may not always work. If the programmer-
provided annotations are too permissive (i.e., there are none, or too few), type
checking with the most specific type may fail. For example, consider the program:

x = new A();

y = new <own|own> C();

x.f = y;

Towards Effective Inference and Checking of Ownership Types 7

Applying function f3 on x.f = y results in T (x) = {〈rep|own〉, 〈own|own〉, 〈own|p〉},
T (f) = {〈own|own〉, 〈own|p〉, 〈p|p〉} and T (y) = {〈own|own〉}. Type checking
with the most specific type from each set obviously does not work because
adapt(〈own|own〉, 〈rep|own〉) = 〈rep|rep〉, not 〈own|own〉.

In our current setting we provide annotations on all allocation sites, and
inference and checking works well. In practice, the vast majority of variables are
mapped to a singleton set and even if they are not, type checking with the most
specific type works. In fact, there was only one case where the heuristic did not
work and this was after adding norep (see next section); we resolved this case
with an explicit annotation to one variable, picking a type other than the most
specific one from the variable’s set.

It is not surprising that annotating all allocation sites results in unique types.
The flow analysis propagates the type annotation at allocation site j to every
variable that refers to the object created at j. In the future, we will extend the
flow analysis to handle an arbitrary set, including the empty set, of programmer-
provided annotations.

5 Implementation

To better illustrate inference and checking, we ignored some features in Java,
including static fields, static methods, libraries and subclassing. However, we
have to consider them in the implementation in order to type check programs in
the real world.

First, we add a new value norep for q0 and q1 in annotation 〈q0|q1〉. norep
denotes that an object is owned by the root environment and might be accessed
by any other object (see [3]). We extend U and the ordering with additional
types:

〈rep|rep〉 < 〈rep|own〉 < 〈rep|p〉 < 〈rep|norep〉 < 〈own|own〉 <
〈own|p〉 < 〈own|norep〉 < 〈p|p〉 < 〈p|norep〉 < 〈norep|norep〉

We add additional viewpoint adaptation rules for norep below:

adapt(〈own|norep〉, 〈q0|q1〉) = 〈q0|norep〉
adapt(〈p|norep〉, 〈q0|q1〉) = 〈q1|norep〉
adapt(〈norep|norep〉, 〈q0|q1〉) = 〈norep|norep〉

5.1 Java Features

Static fields In our implementation, all static fields receive default annotation
〈norep|norep〉 as static fields belong to the root environment.

Static methods There are no receivers for static methods. In our implementation,
we assume static methods have a virtual receiver this. For instance, x=C.sm(y)
is treated using transfer functioin f6, as if it were x=this.sm(y).

8 Wei Huang and Ana Milanova

Boxed primitives All variables of type String, StringBuffer, as well as boxed
primitives (e.g., Long), receive default type 〈norep|norep〉.

Subclassing The way we handle subclassing is to unify the annotations for both
subclasses and superclasses. That is, their methods should have the same an-
notations on parameters and return types. In our implementation, annotations
are not only propagated by assignment statements in the transfer functions, but
also by overridden methods.

Arrays An array object is annotated on the brackets []. For instance, 〈p|p〉 C
〈own|p〉[] lists declares a variable lists, where the array object is of type 〈own|p〉
and the elements are of type 〈p|p〉. When adapting an array variable, both the ar-
ray type and the element type are adapted, e.g. adapt(〈p|p〉〈own|p〉[], 〈rep|own〉)
gives a compound adapted type 〈own|own〉〈rep|own〉[].

Libraries Handling of libraries is one of the major challenges for a realistic
inference and checking tool. In our checker, static fields, parameters and return
types in static library methods receive default annotation 〈norep|norep〉. We take
this conservative default typing for static library methods because in general,
they can pass arguments to static fields and may return data from static fields. In
two cases, we explicitly typecast arguments to 〈norep|norep〉, in order to preserve
the typings of arguments. The methods involved were System.arraycopy() and
Collections.sort(); these typecasts are safe as those two library methods will never
expose their parameters to the outside world.

Parameters and return types of instance library methods map to a set of
{〈own|p〉, 〈p|p〉} in the type mapping T by default, and the actual annotation
would be decided by the flow analysis. Originally, we intended to assign them the
annotation set {〈own|p〉}. Assuming that (1) all local variables in instance library
methods are typed 〈own|p〉, (2) instance methods do not access static fields and
methods, and (3) subclassing of library classes is handled correctly, we will have
that library code type checks and does not break ownership. Unfortunately,
{〈own|p〉} does not work well with containers as it forces the container to have
the same type as its element (e.g., given that the formal parameter of add is
〈own|p〉, the only way to type check hs.add(e) is to have hs and e have the same
ownership type). This is unacceptable because often the element escapes while
the container stays confined. Therefore, we typed library variables as {〈own|p〉,
〈p|p〉} and let the flow analysis to decide the actual annotation.

5.2 Results

The inference analysis and type checking are implemented in Java as a pluggable
checker in the Checker Framework [12]. We evaluate the type checker on two
benchmarks, javad and SPECjbb. All experiments were done on a desktop with
AMD Althlon(tm) II X2 245 Processor @ 2.9GHz and 4GB of RAM, and max
heap size is set to 512MB. The software environment consists of Linux 2.6.35,
JDK 1.6.0 and the Checker Framework 1.1.2.

Towards Effective Inference and Checking of Ownership Types 9

#LOC #Classes #Methods #Annotations Ratio Running Time

javad 4205 45 157 48 12/1KLOC 10s

SPECjbb 12076 61 551 244 20/1KLOC 47s

Table 1. Benchmarks

Table 1 shows the general information about the benchmarks. #LOC gives
the total lines of code; #Classes gives the total number of user classes; #Meth-
ods gives the total number of user methods. #Annotations gives the total
number of annotations that we added, and Ratio gives the number of anno-
tations per one thousand lines of code, 12 for javad and 20 for SPECjbb. The
annotations that we added were provided by the inference tool described in [10].
Finally, Running Time gives the running time for inference and checking; this
is an average of three runs.

javad SPECjbb

#Locals #Returns #Fields #Allocs #Locals #Returns #Fields #Allocs

〈rep|rep〉 8 2 2 6 76 1 58 92

〈rep|own〉 0 0 5 5 1 0 3 5

〈rep|p〉 6 1 11 24 0 0 0 0

〈rep|norep〉 0 0 0 0 7 0 2 8

〈own|own〉 1 0 1 1 39 14 19 25

〈own|p〉 10 3 6 10 60 29 21 21

〈own|norep〉 0 0 0 0 6 1 3 3

〈p|p〉 63 3 11 1 5 0 1 0

〈p|norep〉 0 0 0 0 0 0 0 0

〈norep|norep〉 70 29 15 9 375 103 185 90

〈norep|norep〉∗ 1 0 1 1 118 12 60 90

Table 2. Inferred and checked results for benchmarks javad and SPECjbb

The results of the inference are shown in Table 2. Note that in both bench-
marks there are many 〈norep|norep〉 annotations. The majority of those are boxed
primitives and are assigned 〈norep|norep〉 by default. The last row, 〈norep|norep〉∗,
gives the number of 〈norep|norep〉 assigned to objects that are not boxed primi-
tives; that is, the 〈norep|norep〉 was assigned as a result to flow to or from static
fields. The sum of columns #Allocs differs from #Annotations in Table 1
because we did not provide annotations on allocation sites for boxed primitives
(allocation sites counted in row 〈norep|norep〉 were assigned by the checker and
are excluded from the count in #Annotations).

Overall, these results show encouraging precision. For javad, 50% (18 out of
36) of the fields, and 73% (35 out of 48) of the allocation sites have owner rep.
We exclude boxed primitives from the total count. For SPECjbb, 38% (63 out of
167) of the fields, and 43% (105 out of 244) of the allocation sites have owner
rep. Again, we exclude boxed primitives from the total count.

Finally, we address the question of how important the restriction to one
ownership parameter is. One would expect that allowing only one ownership

10 Wei Huang and Ana Milanova

parameter would impose additional constraints and would cause many objects
dominated by this in the object graph, to receive owner other than rep; in other
words, one would expect that the restriction would flatten the ownership tree.
In order to address the above question we compared the type inference results
to the dominance inference results from [10]. We examined all fields reported as
dom (i.e., dominated by their enclosing object) by the analysis in [10] that were
inferred as having owner other than rep in their ownership type; similarly, we
examined all allocation sites reported as dom (i.e., dominated by their creating
object) by [10] that were inferred as having owner other than rep.

For javad, only 1 field, and only 1 allocation site, both referring to the same
object, were raised from rep to own. In this case, allowing more than one own-
ership parameter would have allowed the rep typing.

For SPECjbb, 7 fields and 16 allocation sites were raised from rep. In about
half of those cases the raising is directly due to passing implicit parameter this as
an argument. For example, in cases such as x = new X(this); dominance analysis
would infer (correctly) that this dominates the newly created X object. However,
type inference raises the type to own because this is of type 〈own|p〉 and the only
solution to adapt(t, t′) = 〈own|p〉 is t = 〈own|p〉, t′ = 〈own|p〉. One can show
that for these cases, allowing more than one ownership parameter would not
have allowed rep typing either! Although we believe that in some of the other
cases raising may have been caused indirectly by this, we estimate that about 4
fields and 10 allocation sites could have been annotated as rep if the system had
allowed more than one ownership parameter.

These results are both surprising and encouraging. Surprising, because one
would have expected the restriction to one ownership parameter to have a more
dramatic negative impact. Encouraging, because the restriction simplifies the
ownership type system, which may ease practical adoption. Clearly, more studies
are needed in order to draw a definitive conclusion.

6 Related Work

We discuss the most recent related work on ownership inference.
There are many work on dynamic inference for ownership-related proper-

ties [1, 6, 11, 14]. Although dynamic inference is more precise, it suffers from
problems of safety and performance overhead. In contrast, static inference is
safer and efficient but less precise. Aldrich et al. [2], and Ma and Foster [9]
present work on inferring uniqueness and ownership statically. Aldrich et al. uses
a constraint system to infer alias annotations, while Ma and Foster combine an
intraprocedural points-to analysis with an interprocedural predicate solution to
infer uniqueness and ownership. Poetzsch-Heffter et al. [13] present a owner-
ship type system, as well as a constraint-based inference analysis to lower the
annotation burden.

Dielt et al. [4] present a tunable static inference for Generic Universe Types.
They encode the Generic Universe Types constraints as a boolean satisfiability
(SAT) problem and use a SAT solver to find a correct Universe typing. The

Towards Effective Inference and Checking of Ownership Types 11

time complexity of their inference is exponential. In contrast, our inference is
based on flow analysis which gives a polynomial algorithm. In addition, their
inference is tunable—programmers can express their preference for certain so-
lutions by providing weights to the SAT solver. Our inference provides similar
functionality—the checker accepts partially annotated programs where the pro-
grammer can annotate any subset of variables to express his/her preference.

We compare this paper with our recent work on ownership inference presented
in [10], in which we first performed dominance inference and then ownership
inference based on the dominance results. This work is an improvement over [10]
in two ways. First, it allows programmers to express their preference by accepting
partially annotated programs while still respecting the dominance relations as
much as possible. Second, it provides a type checker which is not available in [10].

References

1. R. Agarwal. Type inference for parameterized race-free Java. In Verification, Model
Checking, and Abstract, pages 149—-160, 2004.

2. J. Aldrich, V. Kostadinov, and C. Chambers. Alias annotations for program un-
derstanding. ACM SIGPLAN Notices, 37(11):311–330, Nov. 2002.

3. D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias pro-
tection. ACM SIGPLAN Notices, 33(10):48–64, Oct. 1998.

4. W. Dietl, M. D. Ernst, and P. Müller. Tunable Static Inference for Generic Universe
Types. In European Conference on Object-Oriented Programming (ECOOP), July
2011. To appear.

5. W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of
Object Technology, 4(8):5–32, 2005.

6. W. Dietl and P. Muller. Runtime universe type inference. In International Work-
shop on Aliasing, Confinement and Ownership in object-oriented programming
(IWACO), pages 72–80, 2007.

7. W. Huang and A. Milanova. On optimality of ownership type inference. Poster at
ECOOP 2011.

8. Y. Liu and A. Milanova. Ownership and Immutability Inference for UML-Based
Object Access Control. In 29th International Conference on Software Engineering
(ICSE’07), pages 323–332. IEEE, May 2007.

9. K.-K. Ma and J. S. Foster. Inferring aliasing and encapsulation properties for java.
ACM SIGPLAN Notices, 42(10):423, Oct. 2007.

10. A. Milanova and J. Vitek. In Proceedings of TOOLS Europe 2011. to appear.
11. N. Mitchell. The runtime structure of object ownership. In European Conference

on Object-Oriented Programming (ECOOP), pages 74–98, 2006.
12. M. Papi, M. Ali, T. Correa Jr, J. Perkins, and M. Ernst. Practical pluggable types

for Java. In Proceedings of the 2008 International Symposium on Software Testing
and Analysis, pages 201–212, New York, New York, USA, 2008. ACM.

13. A. Poetzsch-Heffter, K. Geilmann, and J. Schäfer. Program analysis and com-
pilation, theory and practice. chapter Infering ownership types for encapsulated
object-oriented program components, pages 120–144. Springer-Verlag, Berlin, Hei-
delberg, 2007.

14. Y. Zibin, A. Potanin, P. Li, and M. Ali. Ownership and immutability in generic
Java. Proceedings of the ACM, pages 598–617, 2010.

