
ReImInfer: Method Purity Inference for Java

Wei Huang Ana Milanova
Rensselaer Polytechnic Institute

110 8th Street, Troy NY
{huangw5, milanova}@cs.rpi.edu

ABSTRACT
Method purity inference, also known as side-effect analysis,
is an important problem. It has many applications includ-
ing compiler optimization, model checking, memoization of
function calls, atomicity, etc. Surprisingly, despite the long
history of this problem, we know of no purity inference tool
that scales to large codes and analyzes both whole programs
and libraries.

We build a purity inference tool called ReImInfer on top of
a type inference and checking framework. ReImInfer infers
method purity for Java. It is modular and compositional,
produces precise results and scales to large programs.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming

Keywords
method purity, type inference

1. INTRODUCTION
A method is pure (or side-effect free) when it has no visible

side effects. Knowing which methods are pure has a number
of applications:

• Compiler optimization: Clausen presents Cream for
optimizing Java bytecode using side-effect analysis [3].
The evaluation in [3] shows that the optimizations
benefit from side-effect analysis. Le et al. use side-effect
information to improve performance in a just-in-time
(JIT) compiler [9]. They make use of side-effect analysis
in local common sub-sexpression elimination, heap SSA,
redundant load elimination and loop-invariant code
motion.

• Model checking: Tkachuk and Dwyer adapt side-effect
analysis to model side-effecting values to improve pre-
cision of model checking via return sensitive and must
side-effect analyses [13].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’12/FSE-20, November 11–16, 2012, Cary, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1614-9/12/11 ...$15.00.

• Memoization of function calls: Heydon et al. use
caching pure function calls to improve runtime per-
formance [6].

• Atomicity: Flanagan et al. exploit purity for reasoning
about atomicity [5]. They present a static analysis
for verifying the atomicity by applying reduction to a
program abstraction based on purity and instability.

• Universe types inference: Universe types [4] require
method purity information. In previous work [7], we
present an inference approach for Universe types which
uses ReImInfer to decide the purity of methods.

In order to facilitate these applications, purify inference
must be precise and scalable. Purity inference (also known
as side-effect analysis) has a long history. The two best-
known publicly available tools are JPPA by Sălcianu and
Rinard [12] and JPure by Pearce [11]. Unfortunately, both
tools are unsuitable. JPPA is a whole-program analysis and
cannot handle libraries. Additionally, it crashes frequently
due to the fact that it is based on a custom compiler. JPure
is modular and scalable by design. Unfortunately, it is fragile.
We were able to analyze only the smallest programs from
our suite (after contacting JPure’s author, David Pearce, for
help).

We build ReImInfer, a tool that infers method purity for
Java. The tool was built because of our concrete needs for
method purity inference and only after spending considerable
time trying to make JPPA and JPure work. We needed purity
inference for Universe type inference [7], flow-sensitive local
type inference, etc. We envision other applications as well.

ReImInfer is modular and compositional. It is modular
in the sense that it can analyze any given set of classes
L. If there are unknown callees in L, the analysis assumes
appropriate default typings. Callers of L can be analyzed
separately and composed with L without re-analysis of L.

ReImInfer is scalable. The purity inference in ReImInfer is
based on reference immutability inference, which has O(n2)
worst-case complexity and works linearly in practice. It took
less than 1 minutes in our largest benchmark xalan, which
has more than 300KLOC, on a server with IntelR© XeonR©

CPU X3460 @2.80GHz and 8 GB RAM (the maximal heap
size is set to 2 GB).

2. METHOD PURITY INFERENCE
In this section, we discuss the analysis behind ReImInfer.

ReImInfer infers method purity based on reference immutabil-
ity which ensures that an immutable reference is not used to

modify the referenced object. The key idea is to decide the
mutability of references passed into the method. If all such
references are immutable, we conclude that the method is
pure.

2.1 Reference Immutability
We propose a context-sensitive type system for reference

immutability named ReIm [8]. ReIm is similar to Javari [14],
the state of the art in reference immutability, but differs
in important points of design and implementation. ReIm
is designed with purity inference in mind. It forgoes the
assignability feature of Javari in order to ensure the desired
semantics for purity. One key novelty in ReIm is the use of
viewpoint adaptation to encode context sensitivity; Javari
uses templating for this purpose. The use of viewpoint
adaptation contributes to the better scalability of ReImInfer
compared to Javarifier, Javari’s inference tool.

Immutability Qualifiers.
Qualifiers are applied to fields, local variables, formal pa-

rameters, and return values in ReIm. There are three im-
mutability qualifiers in ReIm:

• mutable: A mutable reference can be used to mutate the
referenced object; this is the implicit and only option
in standard object-oriented languages.

• readonly: A readonly reference x cannot be used to
mutate the referenced object nor anything it references.
For example, x.f = z is not allowed as this assignment
mutates the object referred to by x.

• polyread: polyread expresses polymorphism over im-
mutability. A polyread reference is immutable in the
current context, but it may or may not be mutable in
other context. The interpretation of polyread depends
on the context, i.e. it can be instantiated to either
mutable or readonly. For example, x.f = null, where x is
polyread, is not allowed, but z = id(y); z.f = null, where
id is defined as polyread X id(polyread X p) {return p;},
is allowed when y and z are mutable. In the latter
case, the polyread return value of id is instantiated to
mutable.

The subtyping relation between the qualifiers is

mutable <: polyread <: readonly

where q1 <: q2 denotes q1 is a subtype of q2.

Context Sensitivity.
Consider the DateCell example in Figure 1. The return

value of getDate is mutated at line 6 through md. A context-
insensitive type system would type the return type of getDate
as mutable, which would force the this of getDate to be muta-
ble. As a result, this of cellGetHours has to be mutable as well
because of the call at line 9 and only mutable references can
be called on cellGetHours. However, we can see that there
is no object mutation in either getDate or cellGetHours. A
context-insensitive type system imposes an unnecessary re-
striction on method calls. Furthermore, our purity inference
algorithm (Section 2.2) would conclude that cellGetHours is
impure, because its implicit parameter this is mutable.

We express context sensitivity using qualifier polyread and
viewpoint adaptation [4]. Viewpoint adaptation of a type

1 class DateCell {
2 Date date;
3 Date getDate(DateCell this) { return this.date; }
4 void cellSetHours(DateCell this) {
5 Date md = this.getDate();
6 md.setHours(1); // md is mutated
7 }
8 int cellGetHours(DateCell this) {
9 Date rd = this.getDate();

10 int hour = rd.getHours(); // rd is readonly
11 return hour;
12 }
13 }

Figure 1: A Date cell. The formal parameter this is
shown explicitly for readability.

q′ from the point of view of another type q, results in the
adapted type q′′. This is written as q � q′ = q′′. Viewpoint
adaptation is applied at field accesses and method calls, where
the “context” changes. We define � for ReIm as follows:

� mutable = mutable
� readonly = readonly

q � polyread = q

where the underscore denotes a “don’t care” value. For
example, the type of field access y.f, where y is readonly
and f is polyread, is the not declared type of f. Instead,
it is the adapted type from the viewpoint of y: qy � qf =
readonly � polyread = readonly.

ReIm overcomes the limitation of context insensitivity. If
we type rd at line 9 as readonly, the return type and this of
getDate, as well as field date as polyread, we have:

polyread Date date;
polyread Date getDate(polyread DateCell this) {

return this.date;
}

At line 9, getDate is called in readonly context (rd is not
modified). We adapt the type of this of getDate from the
viewpoint of rd:

qrd � qthis = readonly � polyread = readonly

As a result this of cellGetHours can be typed as readonly. ReIm
overcomes the limitations of context insensitivity by using
polyread qualifier and viewpoint adaptation. This improves
the precision of purity inference — cellGetHours would be
inferred as pure by our method purity inference algorithm.

Immutability Inference.
We implement an efficient algorithm to infer reference im-

mutability types. Given a set of classes (a whole-program or
a library), our inference algorithm decides mutability for each
reference in the set of classes, including local variables, fields,
return values, and formal parameters. The key idea of the
algorithm is to map each reference to a set of all immutability
qualifiers, i.e. {mutable, polyread, readonly}, and iteratively
remove infeasible qualifiers for each reference according to
ReIm’s typing rules defined in [8]. The detailed inference
algorithm is described in [8].

1 class List {
2 Node head;
3 int len;
4 void add(Node n) {
5 n.next = this.head;
6 this.head = n;
7 this.len++;
8 }

9 void reset() {
10 this.head = null;
11 this.len = 0;
12 }
13 int size() {
14 return this.len;
15 }
16 }

Figure 2: A simple linked list

2.2 Purity Inference
ReImInfer adopts the definition of purity given by Sălcianu

and Rinard [12]: a method is pure if it does not mutate any
object that exists in prestates. Thus, a method is pure if (1)
it does not mutate prestates reachable through parameters,
and (2) it does not mutate prestates reachable through static
fields. The definition allows a pure method to create and
mutate local objects, as well as return a newly constructed
object as a result.

For a method that does not access static fields, the prestates
it can reach are the objects reachable from the actual ar-
guments and the method receiver. Therefore, if any of the
formal parameters of m or implicit parameter this, is in-
ferred as mutable by reference immutability inference, m is
impure. Otherwise, i.e., if none of the parameters is inferred
as mutable, m is pure.

Consider the implementation of List in Figure 2. For
method add, reference immutability inference infers that
both n and this are mutable, i.e. the objects referred to
by them are mutated in add. When there is a method
invocation lst.add(node), we know that the prestates referred
to by the actual argument node and the receiver lst are
mutated. As a result, we can infer that method add is
impure. We can also infer that method reset is impure
because the implicit parameter this is inferred as mutable by
reference immutability inference. Method size is inferred as
pure because its implicit parameter this is inferred as readonly
and it has no other formal parameters.

ReImInfer also considers prestates that are from static
fields. The technical details can be found in [8].

3. COMPARISON WITH OTHER TOOLS
We have evaluated ReImInfer on 13 Java benchmarks,

including 4 whole-program applications and 9 Java libraries,
comprising 766,053 lines of code in total. To evaluate analysis
precision, we compare with JPPA by Sălcianu and Rinard [12]
and JPure by Pearce [11]. ReImInfer scales well to large
programs and shows better precision compared to JPPA
and JPure in almost all cases. Furthermore, ReImInfer,
which is based on the stable and well-maintained Checker
Framework [10], is more robust than JPPA and JPure, both
of which are based on custom compilers. These results suggest
that ReImInfer can be useful in practice as a wide variety of
clients require purity analysis. The detailed comparison can
be found in [8].

4. CONCLUSION
Method purity inference has a number of applications. We

have presented ReImInfer, a modular and compositional tool
for method purity inference for Java. We have evaluated
ReImInfer on 13 large Java programs and Java libraries and

shown that ReImInfer achieves both scalability and precision.

5. REFERENCES
[1] JOlden benchmark suite. http:

//osl-www.cs.umass.edu/DaCapo/benchmarks.html.

[2] HTML Parser.
http://htmlparser.sourceforge.net/, 2006.

[3] L. R. Clausen. A Java bytecode optimizer using
side-effect analysis. Concurrency: Practice and
Experience, 9(April):1031–1045, 1997.

[4] W. Dietl and P. Müller. Universes: Lightweight
ownership for JML. Journal of Object Technology,
4(8):5–32, 2005.

[5] C. Flanagan, S. Freund, and S. Qadeer. Exploiting
purity for atomicity. IEEE Transactions on Software
Engineering, 31(4):275–291, Apr. 2005.

[6] A. Heydon, R. Levin, and Y. Yu. Caching function calls
using precise dependencies. In PLDI, pages 311–320,
2000.

[7] W. Huang, W. Dietl, A. Milanova, and M. D. Ernst.
Inference and Checking of Object Ownership. In
ECOOP, pages 181–206, 2012.

[8] W. Huang, A. Milanova, W. Dietl, and M. D. Ernst.
ReIm & ReImInfer: Checking and inference of reference
immutability and method purity. In OOPSLA, 2012.

[9] A. Le, O. Lhoták, and L. Hendren. Using
inter-procedural side-effect information in JIT
optimizations. In CC, pages 287–304, 2005.

[10] M. M. Papi, M. Ali, T. L. Correa Jr, J. H. Perkins, and
M. D. Ernst. Practical pluggable types for Java. In
ISSTA, pages 201–212, 2008.

[11] D. Pearce. JPure: a modular purity system for Java. In
CC, pages 104–123, 2011.

[12] A. Sălcianu and M. Rinard. Purity and side effect
analysis for Java programs. In VMCAI, pages 199–215,
2005.

[13] O. Tkachuk and M. B. Dwyer. Adapting side effects
analysis for modular program model checking. In
ESEC/FSE, volume 28, pages 188–197, Sept. 2003.

[14] M. S. Tschantz and M. D. Ernst. Javari: Adding
reference immutability to Java. In OOPSLA, pages
211–230, 2005.

APPENDIX
We demonstrate ReImInfer in three usage scenarios: (1)
whole program (i.e., a program which has main method),
(2) an incomplete program (i.e., a library, or any set of
classes without a main method), and (3) composition of a
pre-analyzed library with user code. In addition, we also
build an Eclipse plugin for ReImInfer. The source and bi-
nary can be downloaded from http://code.google.com/p/

type-inference/, where the installation instructions are
also available.

A. WHOLE PROGRAM
ReImInfer can infer method purity on whole programs.

The following steps show how to use ReImInfer to infer
method purity for the BH program in the Jolden benchmark
suite [1].

1. Make sure ReImInfer is installed correctly by following
the instructions.

(a) Purity view in Eclipse

(b) Purity markers in Eclipse

Figure 3: Using ReImInfer in Eclipse

2. Change the console into the BH directory:
cd ./benchmarks/jolden/bh

3. Run the javai-reim command on the source:
javai-reim BH.java Body.java Cell.java MathVector.java
Node.java Tree.java

4. ReImInfer outputs debug information and stores the
inference results into the following three files:

• result.jaif The reference immutability results for all
references except local variables in JAIF format.

• reim-result.csv The references immutability results
for all references in <filename> <linenum> format.
For example, bh/Body.java 10 vel @Mutable Math-
Vector denotes that the vel reference at line 10 in
file bh/Body.java is mutable.

• pure-methods.csv The pure methods inferred by
ReImInfer. The pure methods are in the format
of <absolute-class>.<method-signature>. For ex-
ample, bh.Body.subindex(bh.Tree,int) denotes the
method subindex(bh.Tree,int) in class bh.Body is
pure. If a method does not appear in this file, that
means it is inferred as impure.

JPPA works on this whole program. There are differences
between ReImInfer’s result and JPPA’s result due to limita-
tions in JPPA as discussed in [8]. However, JPure crashes
on this simple program, throwing an exception that we were
not able to correct.

B. INCOMPLETE PROGRAM
ReImInfer can also infer method purity on incomplete

programs (i.e., libraries without a main method). We demon-
strate how to infer method purity for htmlparser, a Java
library for parsing HTML [2].

1. Make sure ReImInfer is installed correctly by following
the instructions.

2. Change the console into the htmlparser directory:
cd ./benchmarks/htmlparser

3. Run javai-reim command on the java source:
find . -name ’*.java’ | xargs javai-reim

The above commands first find all Java source files in
the current directory and then pass these file names as
input to javai-reim.

4. ReImInfer outputs the inference result into three files
as described above.

JPPA does not work on this incomplete program because
it is a whole-program analysis and requires a main method.
JPure crashes on htmlparser; the underlying compiler issues
an error which we were unable to correct.

C. COMPOSING A LIBRARY WITH USER
CODE

In the case when the source code for library methods
is unavailable, ReImInfer conservatively assumes that all
library methods are impure. ReImInfer provides an option,
-AlibPureMethods which allows to incorporate inference result
for libraries. Suppose we wanted to infer method purity for
BH in Jolden by incorporating the inference result of Java
libraries. The following steps show how to compose libraries
with user code.

1. Make sure ReImInfer is installed correctly by following
the instructions.

2. Download the JDK source code from
http://download.java.net/openjdk/jdk6/.

3. Unzip the package.

4. Run javai-reim on java.lang package and java.util package
(or any other JDK packages we want to include):
find ./java/lang ./java/lang -name ’*.java’ | xargs javai-
reim

5. Now pure-methods.csv contains all pure methods in
java.lang and java.util packages. Rename it to jdk-pure-
methods.csv:
mv pure-methods.csv jdk-pure-methods.csv

6. Change the console into the BH directory:
cd ./benchmarks/jolden/bh

7. Run javai-reim on the source with the -AlibPureMethods
option:
javai-reim -AlibPureMethods ../../../jdk-pure-methods.csv
BH.java Body.java Cell.java MathVector.java Node.java
Tree.java

8. ReImInfer outputs the inference results into three files
as discussed above.

The inference result for BH is more precise compared with
the result from Section A, because it incorporates the purity
result for the java.lang and java.util packages. In the case
that an impure user method overrides a pure library method,
ReImInfer issues a warning that the user code does not
comply to the subtyping constraints that are expected by
the library. JPPA and JPure cannot compose library and
user code.

D. ECLIPSE PLUGIN
We can use ReImInfer for Java projects in Eclipse by using

a plugin. The plugin would generate a view showing the
purity of all methods for the selected Java project, as well
as insert markers in the source code to indicate the purity of
each method. Figure 3 shows two screenshots of the plugin.

