
Inferring AJ Types for Concurrent Libraries

Wei Huang Ana Milanova
Rensselaer Polytechnic Institute

Troy, NY, USA
{huangw5, milanova}@cs.rpi.edu

Abstract
Data-centric synchronization advocates data-based synchronization
as opposed to control-based synchronization. It is more intuitive and
can make correct concurrent programming easier. Dolby et al. [9]
proposed AJ, a type system for data-centric synchronization, and
showed that Java programs can be refactored into AJ. Unfortunately,
programmers still have to add synchronization constructs manually
(in the form of AJ type annotations), and the burden on programmers
is high. In this paper we propose a type inference technique that
infers AJ types for concurrent libraries. Our technique significantly
reduces the amount of annotations.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.1.5 [Programming
Techniques]: Object-oriented Programming

General Terms Languages, Theory

1. Introduction
Data races and atomicity violations are difficult to prevent in a
multi-threaded program. Traditional approaches use synchronization
for ordering instructions in order to prevent data races. These
approaches are control-centric, because programmers have to protect
all accesses to shared memory locations. Control-centric approaches
are error-prone and inflexible. First, shared memory locations are not
easy to identify because of the presence of aliasing in object-oriented
programming. In addition, it is also hard to control granularity
of synchronization. When adding or removing memory locations
to be synchronized, a programmer has to carefully reorganize the
instruction sequences.

Data-centric synchronization is a technique which advocates
data-based synchronization as opposed to control-based synchroniza-
tion. In short, programmers specify an atomic set of semantically-
related locations; these locations must be synchronized consistently.
Dolby et al. [9] proposed AJ, a type system for data-centric syn-
chronization. AJ provides a correctness guarantee called atomic-set
serializability, which prevents data races and other concurrency er-
rors. Dolby et al. [9] show that Java programs can be refactored into
AJ. Unfortunately, programmers still need to do significant work to
add synchronization constructs in the form of AJ type annotations,
and the overhead is relatively high.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
FOOL ’12 October 22, 2012, Tucson, AZ, USA.
Copyright c© 2012 ACM [to be supplied]. . . $10.00

1 public class Counter {
2 int val;
3 int get() { return val; }
4 void dec { val−−; }
5 void inc { val++; }
6 }

7 Counter c = new Counter();
8 c.inc();
9 c.dec();

10 ...

Figure 1. A simple counter class example from [9]. We omit the
atomicset a and atomic(a) annotations because we assume that
every class has exactly one atomic set and all fields are protected by
this atomic set.

We propose a technique that infers AJ types for concurrent
libraries. Programmers specify a small number of AJ annotations
to express the design decisions, from which our system would
automatically infer the remaining ones and verify the inference
result. Our approach reduces the annotation burden significantly. It
requires 42 alias annotations for the 11826 LOC Java Collections
library. In contrast, the approach from Dolby et al. [9] requires
370 alias annotations. Thus, our approach achieves almost 90%
reduction.

2. Data-centric Synchronization with AJ

2.1 Overview
AJ [9] extends Java with annotations that support data-centric
synchronization. The type system in our paper, called AJ-lite, differs
from AJ [9] in two ways. First, AJ-lite assumes exactly one atomic
set, named a, per class and all fields of the class are protected by
this atomic set. The atomic set is retrieved by referencing a ghost
field a, i.e. this.a. This is a simplification of AJ, but it is consistent
with the implementation presented in [9]. Each atomic set has a
logical lock protecting all fields of the object. The methods of the
class are units of work which preserve the consistency of the atomic
set. Second, AJ-lite replaces the internal class in AJ with internal
references. In AJ, internal is an annotation on class declarations. AJ
requires that every instance of an internal class is tracked by the type
system, and not leaked outside of the object that constructed it. In
contrast, in AJ-lite internal is an annotation on references; AJ-lite
tracks internal references and disallows leaks outside of the object
that constructed them. AJ-lite allows a class to have both internal
and non-internal references. These two differences between AJ and
AJ-lite do not violate the correctness property of AJ, i.e., the atomic
set serializability guarantee. We justify this claim in Section 2.5.

Figure 1 shows a simple Counter class with atomic increment
and decrement methods. Each Counter object has its own atomic
set, protecting its only field val. Intuitively, when a thread accesses
a Counter object, it must hold the logical lock associated with this
atomic set. Thus, the accesses (increments and decrements of field
val) are serialized and therefore consistent.

1 class PairCounter {
2 int diff;
3 A∗ Counter low = new A∗ Counter();
4 A∗ Counter high = new A∗ Counter();
5 void incHigh() {
6 high.inc();
7 diff = high.get()−low.get();
8 }
9 ...

10 }

(a) PairCounter with aliasing atomic sets.

1 class PairCounter {
2 int diff;
3 A! Counter low = new A! Counter();
4 A! Counter high = new A! Counter();
5 void incHigh() {
6 high.inc();
7 diff = high.get()−low.get();
8 }
9 ...

10 }

(b) PairCounter with internally aliasing atomic sets.

Figure 2. A pair counter class. The example is taken from [9].

In many cases, an atomic set must protect fields of more than
one object. AJ supports merging atomic sets using alias annotations.
Figure 2(a) shows a PairCounter class which has two integer
counters and one method incHigh that updates the difference
between counters. Merging is done by aliasing the atomic set
of each Counter with the atomic set of the PairCounter object.
AJ-lite uses and qualified type A∗ Counter. This corresponding to
|a = this.a| Counter in AJ, where a refers to the atomic set of the
Counter object and this.a refers to the atomic set of the enclosing
PairCounter object. Intuitively, this means that at runtime, a thread
that accesses PairCounter, and/or one of the Counter objects, must
hold the logical lock of PairCounter as well as the locks of the two
Counter objects. Note that the locks are only logical — an actual
implementation can choose to map each logical lock to a distinct
physical lock, merge aliased logical locks into a single physical lock,
and so on.

If the low and high counter objects remain confined within
the PairCounter, that is, all accesses to these counter objects
go through their enclosing PairCounter object, then the Counter
objects do not need locks because they are protected by the lock
of PairCounter. Thus, if the programmer knows (or an analysis
proves) that the counter objects are never exposed, then he/she may
annotate references low and high with the internal alias qualifier A!.
The typing of PairCounter will be as in Figure 2(b). This internal
alias qualifier A! corresponds to the internal annotation on classes
in AJ which we discussed earlier.

2.2 AJ-lite Qualifiers
We now formally introduce AJ-lite’s type qualifiers. There are three
source-level qualifiers in AJ-lite, i.e., the universal set of qualifiers
UAJ-lite = {A∗,A?,A!}:
• A∗: The atomic set of the object referenced by an A∗ reference

x is aliased with the atomic set of the current (i.e., this) object,
i.e. x.a = this.a. A∗ corresponds to the |a = this.a| annotation
in AJ.
• A?: The atomic set of the object that is referenced by an A?

reference x may or may not be aliased to the set of the current

object. In other words, we do not know whether this.a and x.a are
aliased or not. A? corresponds to the implicit default annotation
in AJ.
• A!: The atomic set of anA! object is aliased to the current object.
A! is different fromA∗ because it forbids exposure of the object
outside of the object that constructed it, i.e. the A! object is
internal to the current object. In contrast, an A∗ object can be
accessed by arbitrary objects. A! corresponds to the internal
annotation on classes in AJ.

The qualifiers form the following subtyping hierarchy:

A∗ <: A?
Therefore, A∗ references can be assigned to A? ones. However,

A? ones cannot be assigned to A∗ ones. This is consistent with AJ,
which allows dropping the alias annotation but disallows adding an
alias annotation. The difference between A! and A∗ is that A! is
not a subtype ofA? and therefore,A! references cannot be assigned
to anything but A! references.

2.3 Viewpoint Adaptation
In AJ and AJ-lite, viewpoint adaptation is used when deciding the
types of fields at field access, and the types of formal parameters and
method returns at method call. Consider the field access x.f where
both x and f are declared as A∗. x being A∗ means that the x object
and the current object have their atomic sets aliased. Similarly, the
field f being A∗ means that the x object and the f object have their
atomic sets aliased as well. Therefore, we can conclude that the type
of x.f is A∗ as well. Consider another field access y.g where y is A?
and g is A∗. Because we cannot decide whether this’s atomic set is
aliased to g’s atomic set, y.g is of type A?. Therefore, the types of
fields at field access and the types of formal parameters and method
returns at method call, depend on not only their declared types, but
also the type of the receiver, which represents the access context.

Both AJ and AJ-lite encode this by means of viewpoint adapta-
tion. Viewpoint adaptation is a concept from Universe Types [5, 7, 8],
which can be adapted to Ownership Types [4]. Viewpoint adaptation
of a type q from the point of view of another type q′, results in
the adapted type q′′. This is written as q′ B q = q′′. Viewpoint
adaptation in AJ-lite is defined as follows (Undefined adaptations
would be considered as type errors):

A! B q = q
A∗ B q = q
A? B A∗ = A?
A? B A? = A?

The first two rules state that adapting any type q from the point
of view of A! or A∗ results in q. Recall the field access x.f where
both x and f are A∗. We can decide the type x.f by using viewpoint
adaptation:A∗BA∗ = A∗. The last two adaptation rules state that
adapting q (q 6= A!) from the point of view of A? results in A?.
Recall the other field access y.g where y is A? and g is A∗. We can
decide the type of y.f is A?BA∗ = A?. The reason that the rules
forbid adaptingA! from the point of view ofA? is to guarantee that
internal references would never escape to unknown context.

The above rules are consistent with the rules from Dolby et
al. [9]:

adapt(C, t) = C
adapt(C|a = this.b|,D|b = this.c|) = C|a = this.c|

where adapt(t, t′) is the view of type t from the point of view of
type t′. Here the first rule expresses that an A? type C adapted
from any point of view, results in an A? type, as it is in our rules.
The second rule states that if the adaptee type t is aliased (i.e., we
have C|a = this.b|) then the adapter type t′ must be aliased as well
(D|b = this.c|), and the result of the adaptation is an aliased type

cd ::= class C extends D { fd md } class
fd ::= t f field
md ::= t m(t x) q { t y s; return y } method
s ::= s; s | x = new t() | x = y statement
| x.f = y | x = y.f | x = y.m(z)

t ::= q C qualified type
q ::= A∗ | A? | A! qualifier

Figure 3. Syntax of a core OO language. C and D are class names,
f is a field name, m is a method name, x, y and z are names of local
variables and formal parameters, including implicit parameter this,
and qualifier q is independent of the Java type. Qualifier q at the
method declaration qualifies implicit parameter this.

C|a = this.c|. This seems different from AJ-lite because AJ-lite
allows adapting A∗ from the point of view of A?, but they are
essentially the same. Remember that AJ allows dropping the alias
annotation. Therefore, adapting A∗ from the point of view of A?
in AJ-lite is essentially the same as dropping the alias annotation
of C|a = this.b| and apply the first adaptation rule of AJ, and the
result is consistent — it is A? in AJ-lite and C in AJ.

2.4 Typing Rules
Syntax For brevity, we restrict our formal attention to a core
calculus in the style of Dolby et al. [9] whose syntax appears in
Figure 3. The language models Java with a syntax in a “named form”,
where the results of field accesses, method calls, and instantiations
are immediately stored in a variable. Without loss of generality, we
assume that methods have parameter this, and exactly one other
formal parameter. Features not strictly necessary are omitted from
the formalism, but they are handled correctly in the implementation.
We write t y for a sequence of local variable declarations.

In contrast to a formalization of standard Java, a type t has
two orthogonal components: type qualifier q (which expresses the
alias annotation) and Java class type C. The AJ-lite type system
is orthogonal to (i.e., independent of) the Java type system, which
allows us to specify typing rules over type qualifiers q alone.

Typing rules The typing rules are shown in Figure 4. These
rules are generic and enforce standard subtyping constraints with
viewpoint adaptation at field access and method call. For example,
at field write (TWRITE), f’s type is adapted from the point of view
of x; the resulting adapted type must be a supertype of the type
of the right-hand-side y of the assignment. The generic rules are
part of an inference and checking framework for ownership-like
type systems [14]. The framework takes as input (1) the universe
of type qualifiers, in our case UAJ-lite = {A!,A∗,A?}, (2) the
subtyping hierarchy of type qualifiers, in our case A∗ <: A?, (3)
the viewpoint adaptation function, in our case, as it was specified
earlier (Section 2.3), and (4) the additional B constraints, which are
constraints imposed by individual type systems.

In AJ no rules demand additional constraints. Therefore, all
B sets are empty. We elaborate on the rule for (TCALL). Note that
constraint qy <: qy B qthis prevents a leak of an A!, i.e., internally
aliased reference, which is supposed to be encapsulated by its
enclosing object. We also note here, that implicit parameters this
can only be A! or A∗. Implicit parameter this is always internally
aliased or aliased as a result of our decision that every class has
an atomic set. Intuitively, this is A∗, except when the method is
called on an internal receiver, in which case it must be A! in order
to prevent a leak.

The above mentioned constraint enforces the notion of the
internal class from [9]. Figure 5 shows an example. The return
type of m in class C is A?— m is public and can be invoked at
arbitrary points. As a result, the return type of id and subsequently

(TNEW)
Γ(x) = qx q <: qx B(TNEW)(qx, q)

Γ ` x = new q C

(TASSIGN)
Γ(x) = qx Γ(y) = qy qy <: qx B(TASSIGN)(qx, qy)

Γ ` x = y

(TWRITE)
Γ(x) = qx typeof (f) = qf Γ(y) = qy qy <: qx B qf

B(TWRITE)(qx, qf , qy)

Γ ` x.f = y

(TREAD)
Γ(x) = qx Γ(y) = qy typeof (f) = qf qy B qf <: qx

B(TREAD)(qy, qf , qx)

Γ ` x = y.f

(TCALL)
typeof (m) = qthis, q → q′ Γ(x) = qx Γ(y) = qy Γ(z) = qz

qz <: qy B q qy B q′ <: qx qy <: qy B qthis

B(TCALL)(m, qy, qx)

Γ ` x = y.m(z)

Figure 4. Generic typing rules. The rules enforce standard sub-
typing constraints as well as additional constraints B that can be
imposed by a concrete type system.

1 public class Id {
2 Id id() {
3 Id x = this;
4 return x;
5 }
6 }

7 class C {
8 public Id m() {
9 A! Id y; Id z;

10 y = new A! Id();
11 z = y.id();
12 return z;
13 }
14 }

Figure 5. A leak of implicit parameter this. Example from [9].

x and this in id cannot be A!. Suppose that the return of id and x
are A?, and this of id is A∗; thus, id type checks. The constraint
qy <: qy B qthis causes type checking at call z = y.id() to fail:
we have A! y but an A∗ this, and A? B A! is undefined. This is
the desired behavior because it disallows the leak of the internal Id
object.

Arrays are handled by specifying two types, one for the array
element and one for the array object. For example, following Java 8
syntax [10]

A? Object A! [] signers;

declares an A! array signers which stores A? elements of type
Object. The type of the array object in the above declaration is
from the point of view of the declaring class, while the type of the
element object is from the point of view of the array object. Given
these two types (if the programmer chooses to specify these types),
there exists a unique array field type. The array field type gives the
type of the element from the point of view of the array object. In the
above example, the array field type is A?. Thus, array accesses are
checked as field accesses: For example, the statement s = signers[i];
generates the following constraint:

qsig B q[] <: qs

1 class Transfer {
2 void transfer(unitfor Counter from, unitfor Counter to) {
3 from.dec();
4 to.inc();
5 }
6 }

Figure 6. Adding atomic sets to a unit of work.

where qs gives the type of s, qsig gives the type of the signers array
object, and q[] gives the array field type of that array object.

AJ [9] provides an additional annotation, unitfor, which is used
to annotate formal parameters in bulk methods. unitfor unions the
atomic set of the actual argument with the atomic set of the receiver
of the method for the duration of the execution of the method.
Consider the example in Figure 6. The from and to counters must
be updated atomically. The unitfor construct ensures that atomic
sets of the from and to objects are merged with the atomic set of
the receiver of the transfer method which ensures the consistency
of the update.

unitfor is a dynamic construct. It has no effect on the static
type systems (it does not appear in the static typing rules for AJ
in [9]). unitfor cannot be easily inferred because the consistency
requirements of bulk methods are highly dependent on program
semantics as it is in the Transfer example. In this paper, we assume
that unitfor annotations are provided by the programmer and focus
our inference effort on the alias annotations.

2.5 Correctness Argument
As discussed in Section 2.1, AJ-lite differs from AJ in two ways. We
make an informal argument that these two differences do not violate
the correctness property of AJ, namely, atomic set serializability.

The first difference is that AJ-lite has exactly one atomic set per
class and all fields in the class are protected by this atomic set, while
AJ allows more than one atomic set and some fields can be excluded
from any atomic sets. In fact, AJ-lite captures a special case of
AJ, and it is also consistent with AJ’s current implementation [9].
Therefore, AJ-lite’s simplification of AJ still has the correctness
guarantee as proved in [9]. However, this simplification may hinder
concurrent accesses to data structures designed for sharing. We will
address this restriction in future work.

The second difference is that AJ-lite uses internal references
instead of the internal class in AJ. The adaptation rules of AJ-lite
enforce that an object referenced by anA! variable either (1) remains
protected by the atomic set of its creating object, or (2) escapes to
an object whose atomic set is aliased with its creating object. (1) is
straightforward when an A! object is never exposed to the outside
(this is exactly the same as ownership encapsulation [4]). (2) is
enforced by the first two adaptation rulesA!Bq = q andA∗Bq = q.
AnA! variable remainsA! when it is adapted from the viewpoint of
A! or A∗. For example, y.f where y is A∗ and f is A! is of type A!.
Because y’s atomic set is aliased with the current this’s atomic set,
thus the A! f escapes to this and is protected by this’s atomic set.
Also, the adaptation of A! from the viewpoint of A? is not allowed,
thus an A! variable will not escape to an A? context. Because of
(1) and (2), we know that an A! variable is always protected by
the atomic set of its enclosing data structure and it behaves the
same as an A∗ variable. AJ-lite’s extension on internal reference
does not violate the atomic-set serializability property proved by [9].
Further, A! reference provides other optimization opportunities in
the implementation. For example, if a class is always annotated A!,
we can conclude that this class can safely get rid of its atomic set,
which could improve the performance of the program.

2.6 LinkedList Example
Figure 7 shows a LinkedList example with alias annotations as
inferred by our analysis. Note that in general, AJ-lite would require
at least some programmer annotations. Programmer annotations will
denote semantically related objects that must belong to the same
atomic set. Conversely, annotations could denote unrelated objects
which must have separate atomic sets in order to increase parallelism.
For example, the LinkedList and the ListItr objects are semantically
related and must be aliased: a modification to the LinkedList while
iteration is in progress will result in incorrect behavior of the
iterator (e.g. we may get a ConcurrentModificationException in
Java). Conversely, a new array created in the toArray method of a
collection, is unrelated to the collection object; the programmer can
annotate the array creation site as A?.

The AJ example in Figure 7 requires no manual annotations.
The ListItr object is inferred as A∗ (clearly, the LinkedList and its
iterator are related, and must belong to the same atomic set). The
Entry objects are inferred as A! because they are accessed only
from the LinkedList and ListItr objects which belong to the same
atomic set (thus, the Entry objects are internal to this atomic set).

3. Type Inference and Checking
Our type inference is phrased in the general framework for specifi-
cation, inference and checking of ownership-like type systems [14].
Recall that the framework takes as input (1) the universe of type
qualifiers, in our case UAJ-lite = {A!,A∗,A?}, (2) the subtyping
hierarchy of type qualifiers, in our case A∗ <: A?, (3) the view-
point adaptation function, in our case, as it was specified earlier
(Section 2.3), and (4) the additional B constraints, which are empty
as argued earlier (Section 2.4).

Note that as with ownership type systems (e.g., Universe Types
and Ownership Types) AJ-lite permits multiple valid typings. For
example, all variables1 in the program could be typed as A?; the
program will type check but will be unsafe in a sense that it will
allow atomicity violations. Note that the correctness guarantee
of AJ and AJ-lite, i.e., the atomic set serializability property, is
with respect to the provided alias annotations. For example, if the
programmer has missed to annotate as aliased objects LinkedList
and ListItr in Figure 7, the program will type check, but it may
throw an exception. Similarly, all variables can be typed A∗ which,
again will type check, but will lose concurrency (as all objects will
form one giant atomic set and the program will degenerate into
a sequential program). Recall that we simplify the original AJ by
assuming that every class has an atomic set and all fields belong to
this atomic set.

In addition to the above parameters, which define the AJ-lite
type system, the inference framework takes an additional parameter:
an ordering of the qualifiers. The ordering expresses preference for
typing of variables. The AJ-lite qualifiers are ordered A! > A∗ >
A?. This means (roughly) that if possible, a variable should be
typed as A!; in other words we prefer internally aliased. Otherwise
(i.e., if A! is impossible), it should be typed as A∗. If neither A!
or A∗ are possible, it should be typed as A?. This ordering over
qualifiers gives rise to an ordering over all valid typings: for two
typings T1, T2, we have T1 > T2 iff T1 types more variables as A!
than T2 or T1 and T2 type the same number of variables as A! but
T1 types more variables as A∗ than T2. The highest ranked typing
in this ordering is what we call the “best”, or most desirable typing.
Our goal is to infer the “best” typing.

The inference initializes all annotated variables to the singleton
set that contains the programmer-provided annotation, default initial

1 Term “variable” is used to refer to (1) allocation sites, (2) local variables,
including formal parameters, (3) fields, and (4) method returns

1 public abstract class AbsList {
2 int size;
3 public int size() A∗ {
4 return size;
5 }
6 public abstract A∗ ListIterator iterator() A∗;
7 public abstract void add(Object o) A∗;
8 public abstract boolean addAll(AbsList c) A∗;
9 public abstract Object get(int i) A∗;

10 }

12 class Entry {
13 Object elem;
14 A! Entry next;
15 A! Entry prev;
16 Entry(Object elem, A! Entry next,
17 A! Entry prev) A! {
18 this.elem = elem;
19 this.next = next;
20 this.prev = prev;
21 }
22 }

23 class LinkedList extends AbstractList {
24 A! Entry header;
25 public LinkedList() A∗ {
26 header = new A! Entry(null,null,null);
27 header.prev = header;
28 header.next = header;
29 }
30 public void add(Object o) A∗ {
31 A! Entry p = header.prev;
32 A! Entry newEntry = new A! Entry(o,header,p);
33 header.prev = newEntry;
34 p.next = newEntry;
35 size++;
36 }
37 public A∗ ListIterator iterator() A∗ {
38 ListIterator it = new A∗ ListItr(this,header);
39 return it;
40 }
41 }

43 class ListItr implements ListIterator {
44 final A∗ LinkedList list;
45 private A! Entry header;
46 ListLtr(A∗ LinkedList l, A! Entry h) A∗ {
47 list = l;
48 header = h;
49 }
50 ...
51 }

Figure 7. The LinkedList example with annotations as inferred by our analysis. Unannotated variables are A?. The annotation after method
declaration gives the type of implicit parameter this.

type assignments for special variables (discussed below), and all
remaining variables to UAJ-lite, the universal set of AJ-lite qualifiers.
Then it repeatedly examines each program statement and applies the
statement’s typing rule on the current set of qualifiers; it removes
infeasible qualifiers from the sets until it reaches a fixpoint.

As an example, suppose that the iteration examines x = y where
x is mapping to UAJ-lite = {A!,A∗,A?} and y is mapping to a
singleton set {A?}. When the inference examines the statement, it
removes qualifiers A! and A∗ from the set for x, because neither
A? <: A! or A? <: A∗ holds (which the typing rule for x = y
requires as shown in Figure 4). The final result of the inference is a
mapping from variables to sets of qualifiers. We derive a mapping
from variables to AJ-lite types by mapping each variable to the
maximal qualifier in its set. For AJ-lite, it is guaranteed that (1) this
is a valid typing. This can be proven using a case-by-case analysis. In
addition, it is verified by an independent type checker, which is part
of our implementation. (2) this is the unique “best” typing according
to the ordering on typings described in the previous paragraph. The
proof of a general case, from which the above statement derives, is
given in [14].

Our inference analysis uses programmer-provided annotations,
default initial type assignments, and the above qualifier ordering in
order to infer a desirable typing. Below, we describe the inference
process.

Recall that in this work, we focus on the typing of concurrent li-
braries. We start from the following default initial type assignments:

1. All non-this parameters of public methods receive default type
{A?}. It is expected that, in general, arguments will be unrelated
to the current object and they will maintain their own atomic
set. Note that default annotations take place only if there is no
programmer-provided annotation; if it is needed that certain
parameters are aliased, the programmer can annotate those

parameter, and the programmer-provided annotation would take
precedence over the default.

2. All this parameters receive default {A!,A∗}.
3. All return types of public methods receive default {A∗,A?}.

These methods can be called and return at arbitrary points.

All remaining variables are initialized to {A!,A∗,A?}. Note
that if a variable has a programmer-provided annotation, that anno-
tation overrides the default.

The programmer must examine the allocation sites in the library
and annotate as many allocation sites as A? as possible. Some
of the allocation sites are semantically related to the creating this
object and must be aliased; others are unrelated and can have an
independent atomic set. The analysis prefers A∗ over A? (as we
discussed earlier). Thus, all unannotated allocation sites will be
typed A! or A∗; more precisely, if a site cannot be typed A!, then
it will be typed A∗. Therefore, in order to increase parallelism, the
programmer is encouraged to annotate as many allocation sites as
A? as the semantics of the program permits.

In addition to annotating allocation sites, the programmer may
choose to annotate parameters in order to override the above-
mentioned defaults. For example, in the commonly-used idiom
new X(this), the this object and the new X object are typically
semantically related. However, if X’s constructor is public, the
formal parameter to which this is assigned to will be typed asA? by
default. We would like to type this formal parameter as A∗ because
this will allow us to identify more A! objects.

Next, we set the order over qualifiers asA! > A∗ > A? and run
the inference analysis. The optimality property holds for this system
and ordering, and the inference produces the best AJ typing. We
prefer A∗ over A? because it presents optimization opportunities.

4. Experiments
We have typed a subset of the Java Collections library: LinkedList,
ArrayList, HashMap and all related classes. The subset amounts to
11826 LOC and includes 63 files.

We use the defaults outlined above. We manually added 3 A?
annotations: one at the allocation site Object[] result = new Object
A? [size()] in toArray of AbstractCollection, one at Object[]
result = new Object A? [size] in toArray of LinkedList, and
one at Object[] result = new Object A? [size] in toArray of
ArrayList. The newly created arrays can exist independently of
their creating collection. In addition, we added A∗ annotations to
parameters as follows: for every allocation site new X(...,this,...)
where the constructor X was public, we annotated as A∗ the formal
parameter to which this is assigned. For example, method iterator
in class AbstractList contains statement return (Iterator) new
AbstractList Itr(this). The this object and the newly created iterator
objects must be aliased. However, the constructor AbstractList Itr
is public, and if not annotated, its formal parameter will be typed
as A? by default. Therefore, we insert a manual annotation A∗
for its formal parameter. In addition, we provide several more
manual annotations in order to override the public default: e.g.,
parameter n of public void setNext(A∗ HashMap Entry n) { ...
} must be annotated as A∗; if not annotated, n receives default type
A? which forces all HashMap Entry objects to be A?. However,
HashMap Entry is semantically related to AbstractList Itr and
must be part of its atomic set (i.e., must be aliased). In total we
added 32 A? and A∗ annotations.

We compared the results of our inference with the manually
annotated Collections library used to report results in [9]. 2 The
majority of annotations were as in the manually annotated code.
We observed several differences in AbsractMap. For example, the
manually annotated code in [9] contains the following (we use our
simplified annotations):

1 public boolean containsValue(Object value) {
2 A∗ Iterator i = entrySet().iterator();
3 if (value == null) {
4 while (i.hasNext()) {
5 A∗ Map Entry e = (A∗ Map Entry)i.next();
6 if (e.getValue() == null)
7 return true;
8 }
9 } else {

10 while (i.hasNext()) {
11 A∗ Map Entry e = (A∗ Map Entry)i.next();
12 if (value.equals(e.getValue()))
13 return true;
14 }
15 }
16 return false;
17 }

Our inference types the e at lines 5 and 11 as A?. This is because
we do not add a cast at the right-hand-side of the assignment. The
return of public Object next() is A? (the object it returns is not
part of the container’s internal structure), and the A? annotation
propagates to the e’s. The iterator i at line 2 is inferred as A∗, just
as in the manually annotated code.

In order to get exactly the same set of alias annotations as the
manually annotated Collection library we would need 10 downcast
A∗ annotations (it is a design decision to not add these downcasts).
Thus, in total, we will have 42 alias annotations. Compared with [9],
42 vs. 370 is almost 90% reduction. As mentioned earlier, we do not
infer unitfor annotations. Those annotations are difficult to infer as
it would require dynamic analysis. In order to achieve consistency

2 We obtained the annotated library from Prof. Jan Vitek.

we would need to manually add about 53 unitfor annotations, as
in [9].

Our implementation is part of the inference and checking frame-
work described in [14]. The code for the framework is publicly
available at http://code.google.com/p/type-inference/,
including source.

5. Related Work
We briefly discuss related work on type systems for preventing data
races and atomicity violations, and inference of pluggable types.

Abadi et al. [1] present a static race detection analysis for Java.
The analysis is based on a type system that captures synchroniza-
tion patterns. By checking programmer provided type annotations,
the type system can guarantee the absences of data races if the
synchronization and the type annotations are consistent. They also
provide an inference algorithm to compute annotations automati-
cally and a user interface to facilitate inspecting warnings generated
by the checker. Abadi et al.’s inference algorithm and the inference
algorithm used by Tip et al. [12, 18] are similar to our inference
algorithm of AJ. These algorithms start with sets containing all pos-
sible answers and iteratively remove elements that are inconsistent
with the typing rules. Our algorithm also uses a preference ranking
over qualifiers to pick up the “best” typing for AJ.

Flanagan and Qadeer [11] present a type system for specifying
and verifying the atomicity of methods for Java. The type system
can check that the instructions of an atomic method are not inter-
leaved with instructions from other threads for any arbitrary exe-
cutions. They also implement an atomic type checker for Java and
discover a number of atomicity violations in java.lang.String and
java.lang.StringBuffer.

There are a number of works for inferring user-defined type
qualifiers to reduce programmer’s burden on annotations. Green-
fieldboyce and Foster [13] present a framework called JQual for
inferring user-defined type qualifiers in Java. JQual is effective for
source-sink type systems, for which programmers need to add anno-
tations to the sources and sinks and JQual infers the intermediate
annotations for the rest of the program. Chin et al. [3] propose
CLARITY for the inference of user-defined qualifiers for C pro-
grams based on user-defined rules, which can also be inferred given
user-defined invariants. CLARITY infers several type qualifiers, in-
cluding pos and neg for integers, nonnull for pointers, and tainted
and untainted for strings.

There are also lots of works on inference of ownership types.
Aldrich et al. [2] present an ownership type system and a type in-
ference algorithm. Their inference creates equality, component and
instantiation constraints and solves these constraints. Ma and Fos-
ter [16] propose Uno, a static analysis for automatically inferring
ownership, uniqueness, and other aliasing and encapsulation prop-
erties in Java. Dietl et al. [6] present a tunable static inference for
Generic Universe Types (GUT). Constraints of GUT are encoded
as a boolean satisfiability problem, which is solved by a weighted
Max-SAT solver. Milanova and Vitek [17] present a static domi-
nance inference analysis, based on which they perform ownership
type inference.

This work is closely related to our previous work on inference
of ownership types [14], and reference immutability types [15].
All type systems are applications in our inference and checking
framework.

6. Conclusions and Future Work
We presented an inference technique which infers AJ types for
concurrent libraries. The technique reduces the number of alias
annotations by approximately 90%. This result shows that our
technique is feasible.

In the future we will expand our technique to infer types for
whole programs in addition to libraries. Whole programs are harder
than libraries because there is no easy way to assign defaults, the
way we assign defaults in libraries. We will exploit opportunities for
optimization due to internal aliasing and read-only. Our experience
with ownership types suggests that there are many internally aliased
objects and thus, significant opportunities for optimization.

In addition, our assumption that all fields belong to the single
atomic set of a class may hinder concurrent access to data structures
designed for sharing, e.g. immutable objects. We will improve the
type system to address this restriction.

7. Acknowledgements
We thank Dr. Frank Tip, Dr. Mandana Vaziri and the anonymous
FOOL reviewers for their detailed and extremely valuable comments
on earlier versions of this paper.

References
[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for safe locking: Static

race detection for Java. ACM Transactions on Programming Languages
and Systems, 28(2):207–255, 2006.

[2] J. Aldrich, V. Kostadinov, and C. Chambers. Alias annotations for
program understanding. In OOPSLA, pages 311–330, 2002.

[3] B. Chin, S. Markstrum, T. Millstein, and J. Palsberg. Inference of user-
defined type qualifiers and qualifier rules. In ESOP, pages 264–278,
2006.

[4] D. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias
protection. In OOPSLA, pages 48–64, 1998.

[5] D. Cunningham, W. Dietl, S. Drossopoulou, A. Francalanza, P. Müller,
and A. Summers. Universe types for topology and encapsulation. In
FMCO, pages 72–112, 2008.

[6] W. Dietl, M. D. Ernst, and P. Müller. Tunable static inference for
generic universe types. In ECOOP, pages 333–357, 2011.

[7] W. Dietl and P. Müller. Universes: Lightweight ownership for JML.
Journal of Object Technology, 4(8):5–32, 2005.

[8] W. Dietl and P. Müller. Runtime universe type inference. In IWACO,
pages 72–80, 2007.

[9] J. Dolby, C. Hammer, D. Marino, F. Tip, M. Vaziri, and J. Vitek.
A data-centric approach to synchronization. ACM Transactions on
Programming Languages and Systems, 34(1):1–48, Apr. 2012.

[10] M. D. Ernst. Type Annotations specification (JSR 308). http:
//types.cs.washington.edu/jsr308/, 2012.

[11] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In
PLDI, number 5, pages 338–349, 2003.

[12] R. Fuhrer, F. Tip, A. Kieżun, J. Dolby, and M. Keller. Efficiently
refactoring Java applications to use generic libraries. In ECOOP, pages
71–96, 2005.

[13] D. Greenfieldboyce and J. S. Foster. Type qualifier inference for java.
In OOPSLA, pages 321–336, 2007.

[14] W. Huang, W. Dietl, A. Milanova, and M. D. Ernst. Inference and
checking of object ownership. In ECOOP, pages 181–206, 2012.

[15] W. Huang, A. Milanova, W. Dietl, and M. D. Ernst. ReIm & ReImInfer:
Checking and inference of reference immutability and method purity.
In OOPSLA, 2012.

[16] K.-K. Ma and J. S. Foster. Inferring aliasing and encapsulation
properties for java. In OOPSLA, pages 423–440, 2007.

[17] A. Milanova and J. Vitek. Static dominance inference. In TOOLS,
pages 211–227, 2011.

[18] F. Tip, R. M. Fuhrer, A. Kieżun, M. D. Ernst, I. Balaban, and B. D.
Sutter. Refactoring using type constraints. ACM Transactions on
Programming Languages and Systems, 33(3):1–47, Apr. 2011.

