
Static Object Race Detection

Ana Milanova and Wei Huang

Rensselaer Polytechnic Institute

Abstract. We present a novel static object race detection analysis. Our
analysis is data-centric in the sense that dominance and ownership, as
well as object-based reasoning about control, play a crucial role. Our
empirical results show that the analysis scales well and has relatively low
false-positive rate. In some cases, our analysis outperforms the leading
static race detector Chord.

1 Introduction

A multithreaded program contains an object race when two threads invoke meth-
ods on the same object “simultaneously” (i.e., without ordering constraints be-
tween them). An object race is a generalization of a data race [15]. It may or
may not lead to a data race; however, an object race is necessary in order for
a data race to occur. Reasoning about object races is valuable in several ways.
First, it entails reasoning about object structure, in particular dominance-based
ownership structure [3], which may facilitate localization and correction of con-
currency bugs. Second, it complements data race detection because object races
may expose hidden data races (e.g., data races on internal objects of library
classes, which typically are not reported by data race detectors).

In this paper we present a novel static analysis for object race detection.
Dominance, as well as object-based reasoning about control, play a crucial role.

Dominance is defined in terms of the notion of object graph. Nodes in the
object graph are objects, and edges capture references between those objects.
An edge links object i to object j if i has a field that refers to j, or a variable
in a method invoked on receiver i, refers to j. Object i dominates (or owns)
j if all paths from the root of the object graph to j go through i. Dominance
plays an important role in object race detection. Namely, synchronization on a
dominator i protects all objects j internal to i’s dominance boundary. Conversely,
lack of synchronization on i may expose object races deep in the boundary of
i. Fig. 1 shows a program and Fig. 2 shows an abstract object graph for this
program. In this example, allocation sites j, m, b, t and w are executed many
times, resulting in many concrete objects. A typical static abstraction scheme
maps every concrete object to its allocation site, thus these concrete objects are
mapped to the same abstract objects j, m, b, t, and w.

Additionally, we define the notion of the call graph. Nodes in the call graph
are tuples i.m where i is an object and m is a method name; the tuple denotes
that method m executes on receiver object i. The edges represent calls: there
is an edge from i.m to j.n if method m executing on receiver i calls method

H. Yang (Ed.): APLAS 2011, LNCS 7078, pp. 255–271, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

256 A. Milanova and W. Huang

n on receiver j. This object-based call graph is natural for object-oriented lan-
guages where objects and control are inherently intertwined and synchronization
is naturally object-based. It facilitates object race detection. For example, when
control descends into i.m, if m holds the lock on i, this lock protects not only
i but all objects j dominated by i, that are accessed along the call chain from
i.m. Fig. 2 shows the abstract call graph for the example program.

class J extends Thread {
static C c; int wId;
static void main(String[] arg) {
c = new C(); c

for (int num=1; num<=3; num++) {
c.inc();
for (int wID=0; wID<num; wID++) {
J j = new J(); j

j.wId = wID;
j.start();

}
}
}
public void run() {
M m = new M(); m

m.init(c,whId); c.addThread(m);
m.go();

}
}

class C {
W[] a = new W[10]; a

int num = 0;
synchronized void inc() {
W w = new W(); w

a[num++] = w;
}
synchronized void addThread(M m) { ... }
synchronized W getW(int i) {
W w = a[i]; return w;

}
}

class W {
int count = 0; S s = ...;
void update(H h) {
this.count++; s.put(h);

}
synchronized get() {
return s;

}
}

class M {
int wId; C c;

T[] b = new T[10]; b

void init(int wID, C c) {
this.wId = wID; this.c = c;

}
void go() {
T t = new T() t

b[0] = t; t.init(wId,c); t.process();
}

}

class T {
int wId; C c; W w;
void init(int wID, C c) {
wId = wID; this.c = c;
w = c.getW(wId);

}
void process() {
S s = w.get(); ... w.update(new ...);

}
}

Fig. 1. Example program

Our analysis classifies objects as distributed or owned. A distributed object is
dominated only by the root of the object graph. In contrast, an owned object
is dominated by at least one object (owner). The analysis first identifies races
on distributed objects, and then descends into the dominance boundary of each
object to identify races on owned objects. The main intuition is that in order

Static Object Race Detection 257

rroot

j c

m

a

j

w

t

b

j

tttt
bbbb

ttttt

aaaaaa

cccccccc

wwww

mmmmmmmmmmmm

�…

�…

�…

cc

rroot.main

j.run c.inc

j run
ncccc

a.wr

m.go mmmmm.g

c.getW

w.get

m.init niiiiittt

t.init t.process t.proccccccceeeeees

c ge

w.get

p

niiiittttt

t.innittttttb.wr

a.rd a.rrrrd
w.update

Fig. 2. Abstract object and call graphs for example program

to have a race on an owned object, we must first have a race on its dominator
(owner). The analysis is best illustrated by an example. Consider Fig. 1 (modeled
after benchmark SPECjbb). Method main forks multiple threads that act on the
C (Company) object stored in static field c. Each thread creates a M (Transac-
tionManager) object which in turn creates multiple T (Transaction) objects each
accessing the C object and the W (Warehouse) objects. Our analysis identifies
objects w, c and m as distributed (they are circled in the object graph in Fig. 2).
There are two object races on w: 〈w, get, update〉 and 〈w, update, update〉. There
are no races on c because all accesses to c are synchronized, and there are no
races on m because each m is accessed only by its creating thread. The analysis
proceeds to identify races in the boundary of w that are triggered by the two
object races on w, 〈w, get, update〉 and 〈w, update, update〉. The lack of races on
c entails that there are no races on a — a is owned by c and all accesses to a are
protected by the lock on owner c. The lack of races on m entails that there are
no races on owned t and b.

We have implemented the analysis and present results on several benchmarks.
Our analysis presents relatively low false-positive rate and runs in less than 1
minute on all but one benchmark. On most benchmarks our analysis performs
comparably to Chord [9], the leading static data race detector. On several bench-
marks our analysis outperforms Chord, in some cases significantly.

The rest of the paper proceeds as follows. Section 2 formalizes the notions of
object graph and call graph and presents a static analysis (abstract interpreta-
tion [4]) that infers safe abstract object and call graph. Section 3 describes the
dominance inference analysis. Section 4 presents the object race detection anal-
ysis. Section 5 describes our implementation and experience with the analysis,
Section 6 discusses related work and Section 7 concludes the paper.

2 Formal Account of Object Graphs

We explain our algorithm in terms of a core Java-like calculus. Throughout the
paper we will use the following notation for graphs. An object graph G is a pair

258 A. Milanova and W. Huang

cd ::= class C extends D {fd md} class
fd ::= τ f field
md ::= τ m(τ x){τ z s; return y} method
s ::= s; s | x = new C() | x = this.f statement

| this.f = y | x = y.m(z)
τ ::= C type

T ::= tS thread
H ::= [] | H[i !→ o] heap
S ::= ε | 〈m F s〉S stack
F ::= [] | F [y !→ i] frame
o ::= C(i) object

Fig. 3. Syntax

(N, E) where N is a set of objects ranged over by variables i, j, k, l and E
is a set of directed edges written i ! j. We write i ∈ G and i ! j ∈ G to test,
respectively node and edge membership. A call graph C is a pair (N, E) where
N is a set of tuples written i.m, where i is an object and m is a method, and E
is a set of directed edges written i.m ! j.n . The meaning of a call graph edge is
that method m invoked on receiver object i calls method n on receiver object j.
Again, we write i.m ∈ C and i.m ! j.n ∈ C to test membership.

2.1 Concrete Semantics

For brevity, we restrict our formal attention to a core calculus in the style of [14]
whose syntax appears in Fig. 3. The language models Java with a syntax in A-
normal form. Fields are strongly private. Array accesses are modeled by special
methods rd and wr — array read x=y[i] is treated as method call x = y.rd() and
array write x[i]=y is treated as x.wr(y); index i is irrelevant for our purposes and
is omitted. Throughout the paper, metavariables m and n range over all method
names and rd and wr. Features not strictly necessary are omitted.

The concrete semantics operates over configurations of the form H ; T ; G; C; P
where H is a single heap, T is a collection of threads, G is a summary object
graph, C is a summary call graph and P holds auxiliary information necessary
to construct C. A heap is a mapping from indices, ranged over by meta-variables
i, j, k, l, to objects. Each thread T has its own stack S and a unique thread
identifier t. A stack is a sequence of frames 〈m F s〉 consisting of a method
name m, a mapping F from variables to locations and a statement s. An object
o = C(i) consists of a class C and values i for the object fields. An object graph
G summarizes all references between objects. A call graph C summarizes all
method calls between objects.

We write i to denote a sequence of indices, τ z for a sequence of local variable
declarations, etc. We write 0 to denote the null reference.

Following [14], a multi-threaded Java program is modeled as a fixed set of
threads T , each of which starts with a call to a run method, and terminates
when the run method returns. The reduction relation l−→t represents a step
in the semantics; l is an action label and t is the identifier of the thread that
executed that action. We use action labels on methods calls →i.m (call), and
on method returns ←i.m (return), as well as the empty label ε. Later in the

Static Object Race Detection 259

paper, labels are used to define traces and object races. Thread scheduling is
modeled as a non-deterministic choice where each step picks one of the threads
for reduction (see [14] for the rule). Due to space constraints, the rules of the
concrete semantics are not shown here.

2.2 Abstract Semantics

We assume a may points-to analysis that computes a safe approximation of
the heap Ĥ , collection of threads T̂ , and each stack Ŝ. The abstract semantics
computes safe approximations of G and C, denoted Ĝ and Ĉ respectively. As
Ĥ and Ŝ are conservative approximations, the semantics operates on sets of
abstract objects. Thus, F̂ (x) evaluates to a set of abstract objects, not to a single
object. Similarly, fields of an object in Ĥ are sets of references (denoted I). We
assume that all allocation sites are labelled with an unique identifier.

The abstraction function α is specific to our points-to analysis and is chosen
so that α(i) = i′ where i′ is the index of the allocation site that created i. The
abstraction applies to threads as well: α(t) = t′ where t′ is the index of the
allocation site that created the java.lang.Thread object that started t’s run. α
acts on G in the obvious way: α(G) = (N, E), where N = {α(i) | i ∈ G} and
E = {α(i) ! α(j) | i ! j ∈ G}. Similarly, α acts on C: α(C) = (N, E) where
N = {α(i).m | i.m ∈ C} and E = {α(i).m ! α(j).n | i.m ! j.n ∈ C}.

As the points-to analysis is safe, the following two conditions hold at every
step. The first condition ensures the safety of variables, and the second ensures
the safety of fields.

F (x) = i ⇒ α(i) ∈ F̂ (x)
H(i) = C(...kf ...) ⇒ Ĥ(α(i)) = C(...If ...) ∧ α(kf) ∈ If

The rules of the abstract semantics use Ĥ and F̂ and compute Ĝ and Ĉ. We
write Ĝ += i ! j to denote the addition i and j to the nodes of Ĝ and i!j to the
edges of Ĝ. Similarly, we write Ĉ += i.m ! j.n to denote the addition of i.m and
j.n to the nodes of Ĉ, and i.m!j.n to the edges of Ĉ. Auxiliary function dispatch
takes as argument the class of the receiver C and the call site id c and returns
the run-time target n.

Fig. 4(a) (left column) shows the rules for constructing object graph Ĝ.
(anew) adds new edges to Ĝ from every abstract receiver i of current frame
m, to the abstract object j created at allocation site j. Rule (acall) adds new
edges to Ĝ from every abstract object k in the points-to set of y, to every j in
the points-to set of an actual argument z, and from each abstract receiver i of
method m, to each j in the points-to set of the return variable of n, retn. Note
that calls through this, e.g., this.n(z), do not add edges to Ĝ. This is correct
because when the call is through this the relevant abstract edges are already in
Ĝ and there is no need to add them again.

Fig. 4(b) (right column) shows the rules for constructing call graph Ĉ. The
first two rules compute sets P̂k.n, the set of caller tuples for k.n. (acall) adds

260 A. Milanova and W. Huang

(anew)
x = newj C() in method m ⇒

Ĝ += {k ! j|k ∈ F̂ (thism)}

(acall)
c: x = y.n(z), y #= this, in method m ⇒

foreach k ∈ F̂ (y)
Ĥ(k) = C(...) n = dispatch(C, c)

Ĝ += {k ! j | j ∈ F̂ (z) ∧ j ∈ j}
Ĝ += {i ! j | i ∈ F̂ (thism) ∧ j ∈ F̂ (retn)}

(a) Object graph Ĝ.

(acall)
c: x = y.n(z), y #= this, in method m ⇒

foreach k ∈ F̂ (y)
Ĥ(k) = C(...) n = dispatch(C, c)

P̂k.n += {i.m | i ∈ F̂ (thism)}

(acallthis)
c: x = this.n(z) in method m ⇒

foreach k ∈ F̂ (y)
Ĥ(k) = C(...) n = dispatch(C, c)

P̂k.n += P̂k.m

(acall) and (acallthis)
c: x = y.n(z) in method m ⇒

foreach k ∈ F̂ (y)
Ĥ(k) = C(...) n = dispatch(C, c)

Ĉ += {i.m ! k.n | i.m ∈ P̂k.n}

(b) Call graph Ĉ.

Fig. 4. Ĝ, Ĉ, and each P̂k.n are initialized to ∅. The rules (i.e., transfer functions) are
applied iteratively until they reach fixpoint.

i.m, where i is an abstract receiver of m, to P̂k.n. Rule (acallthis) adds P̂k.m,
the set of caller tuples for k.m to P̂k.n. The last rule, applied to both (acall)
and (acallthis), adds edges to Ĉ from each tuple i.m in P̂k.n to k.n. Edges
i.m ! k.n reflect that m, called on receiver i, calls n on receiver k (the edges
“bypass” chains of calls on k through this). As it is customary with abstract
interpretations, the rules (i.e., transfer functions) are applied repeatedly until
P̂k.n and Ĉ reach fixpoint.

Note the explicit distinction of (acall) and (acallthis). A naive analysis
will treat them identicaly, i.e., y.n() in method m would lead to edges from every
tuple i.m where i ∈ F̂ (thism) to every tuple j.n, where j ∈ F̂ (y) regardless of
whether y is this or not. F̂ (thism) typically refers to a set of abstract objects.
For example, if F̂ (thism) is {i, j} and the call is this.n(), the naive analysis would
lead to edges i.m! i.n, i.m! j.n, j.m! i.n and j.m! j.n, when clearly, only the first
and the last are feasible. A less naive analysis may make the distinction between
(acall) and (acallthis), and at (acallthis) only create edges i.m!i.n, where
i ∈ F̂ (thism). This is not sufficient, because abstract edge i.m!i.n may represent
a call through this on the same concrete object, or a call from one concrete object
i′ to a different concrete object i′′ where both i′ and i′′ are mapped to the same
abstract i. Our analysis must capture transfer of control between distinct objects
(i.e., inter-object transfer of control); by propagating the tuple that starts the
chain of calls through this, it captures all inter-object transfer of control.

Static Object Race Detection 261

3 Dominance Inference Analysis

This section outlines dominance inference analysis and states its correctness
results. This analysis is at the heart of object race detection (Section 4), but its
details are beyond the scope of this paper. More details are available in [7].

We begin the description with several definitions. Let G be any directed graph.
A path is written as p = n0 !n1 !n2 ! . . . nm−1 !nm; the trivial path is written as
n0 and a self-loop is written as n0 ! n0. A root for G is a node r ∈ G such that
for all nodes n ∈ G there is a (possibly trivial) path from r to n. A boundary for
a node n ∈ G is any graph Bn ⊆ G such that n is a root of Bn. We assume that
G has root root. A node n ∈ G dominates node n′ ∈ G if all paths from root
to n′ go through n. The dominance boundary for a node n ∈ G is the maximal
boundary Bn such that for all nodes n′ ∈ Bn, n dominates n′ in G. We denote
the dominance boundary of n ∈ G as Dn.

3.1 Dominance Boundary

Dominance boundary analysis takes as input the abstract object graph Ĝ and
abstract object i, and computes B̂i ⊆ Ĝ, the abstract dominance boundary of i.
The following theorem holds for B̂i:

Theorem 1. Let G be any object graph and i be any object in G. Let B′
i be any

boundary of i in G. If α(B′
i) ⊆ B̂α(i) then B′

i ⊆ Di.

The theorem states that the computed B̂α(i) safely approximates the dominance
boundary of i. That is, for any concrete boundary B′

i whose abstract represen-
tative is included in B̂α(i), B′

i is included in Di, or in other words, i dominates
in G all of B′

i’s nodes. Consider our running example. The abstract dominance
boundary of object m, B̂m, includes edges m ! b , m ! t and b ! t . The theorem
states that every concrete m dominates the b and t objects it refers to.

3.2 Minimal Boundaries

Minimal boundary analysis takes as input an abstract object graph Ĝ and an
edge i ! j ∈ Ĝ, and returns a set of objects, which we denote by m̂inBi"j . Each
node k ∈ m̂inBi"j is a root of a dominance boundary B̂k containing i!j. In our
running example m̂inBb"t equals {m}. Edge b! t is contained in the boundary of
root as well; however, the boundary of m is the minimal boundary. As another
example, m̂inBt"w equals {root}.

Let G be any concrete object graph. We say that k ∈ G covers j ∈ G if for
every path p from k to j, p = k ! · · · ! j, α(p) ∈ B̂α(k). The following theorem
ensures the safety of m̂inB:

Theorem 2. Let G be any concrete object graph and let i ! j ∈ G be any edge.
There exists k ∈ G, k %= j, such that (1) α(k) ∈ m̂inBα(i"j) and (2) k covers j.

262 A. Milanova and W. Huang

The theorem guarantees the safety of the minimal boundary analysis. It states
that m̂inBi"j “covers” every concrete edge represented by i ! j. In other words,
for every concrete edge, we consider at least one root (and its boundary) that
abstracts a dominator of that concrete edge (although not necessarily the im-
mediate dominator). The theorem below ensures the minimality of m̂inB:

Theorem 3. Let i ! j ∈ G be any edge. Let k ∈ G, k %= j be such that (1)
α(k) ∈ m̂inBα(i"j) and (2) k covers j. For every k′ if k dominates k′ and k′

covers j, then α(k′) ∈ m̂inBα(i"j).

Informally, the theorem states that if there is a dominator k′ which is closer than
k, and k′ covers j, then α(k′) will be contained in m̂inB.

4 Object Race Detection

We begin with the definition of an object race. In the style of [14], the execution
of the program is viewed as a trace Tr of events Tr = e1, e2 · · · en performed by
different threads. As in [14], an event is a tuple e = (H, T , l, t) which consists of
a partial configuration H ; T , an action label l and a thread id t. An object race
occurs when an event with a method call→j.n occurs, and there is an outstanding
call j.n′ on the same receiver j made by a different thread (essentially, this is
the complement of atomic set serializability as defined in [14]).

Definition 1. There is an object race, denoted by 〈j, n, n′〉, when trace Tr con-
tains event e = (H, T , j.n, t), such that ∃t′S ∈ T where t′ %= t and 〈n′ F s〉 ∈ S
and F (this) = j.

For convenience, we extend the above notation for events with calls to include
the caller tuple. Namely, let event e correspond to step H ; T ; G; C; P →j.n−−−→t

H ′; T ′; G′; C′; P ′. Instead of e = (H, T ,→ j.n, t) we write e = (H, T , i.m ! j.n, t)
where i.m = P ′ (i.e., i.m started the chain of calls through this on receiver j).

An object race 〈j, n, n′〉 entails that there are paths p = t.run ! · · · ! j.n ∈
C and p′ = t′.run ! · · · ! j.n′ ∈ C, where t′ %= t. Our object race detection
analysis (Section 4.3) traverses pairs of abstract paths p=t.run! · · ·! j.n ∈ Ĉ and
p′=t′.run! · · ·!j.n′ ∈ Ĉ, where abstract t and t′ are not necessarily different, and
discovers object races. The analysis uses reentrancy analysis (Section 4.1), and
lock analysis (Section 4.2) to avoid infeasible races. Non-reentrancy of edge i ! j
guarantees (informally) that no two threads can execute events on i ! j; thus,
i.m ! j.n ∈ p and i.m′ ! j.n′ ∈ p′ does not contribute an object race on j. Lock
analysis associates locksets with events; non-empty intersection of two locksets
guarantees (again informally) that events are executed serially.

4.1 Reentrancy Analysis

Reentrancy analysis computes predicate reentrant : i!j ∈ Ĝ → {true, false} with
the following properties. Let i!j be any concrete edge, in any G. If reentrant(α(i!

Static Object Race Detection 263

j)) equals false, then (a) i creates j due to (dnew) and (b) trace Tr does not
contain a pair of events e = (H, T , i.m ! j.n, t) and e′ = (H ′, T ′, i.m′ ! j.n′, t′)
such that t′ %= t. Informally, if an edge is not reentrant, no two distinct threads
can execute events on it.

We compute reentrant by first computing two sets of edges, Fields and Flows .
Set Fields contains all abstract field edges:

Ĥ(i) = C(...If ...) ∧ j ∈ If ⇒ Fields += i ! j

Set Flows contains all edges that capture object flow (i.e., object transfer from
one object to another). Set Flows is computed during the construction of Ĝ;
specifically, rule (acall) in Fig. 4(a) (left column) is augmented with the fol-
lowing two lines after the last line Ĝ += ...:

Flows += {k ! j | j ∈ F̂ (z) ∧ j ∈ j}
Flows += {i ! j | i ∈ F̂ (thism) ∧ j ∈ F̂ (retn)}

Objects j passed as arguments or returned at calls x = y.m(z), y %= this, are
transferred, and the resulting edges are added to Flows . We now define reentrant :

reentrant(i ! j) =
{

true if i ! j ∈ Fields ∨ i ! j ∈ Flows
false otherwise

In our running example, edge j !m is not reenetrant. In every call to run, thread
j creates a new m object; m is not stored as a field of j and m does not flow
back to j. It is impossible for one thread j to access another thread’s m. Note
that the m objects are not thread-local, because they escape to a field of static
object c.

One can show that reentrant(α(i ! j)) = false implies properties (a) and (b)
stated at the beginning of this section. To show (b), suppose that there exists
an edge i ! j in some G, such that reentrant(α(i ! j)) = false, and the trace
contains events on i ! j e = (H, T , i.m ! j.n, t) and e′ = (H ′, T ′, i.m′ ! j.n′, t′)
such that t′ %= t. Let thread t create j, and consider thread t′ and method m′.
Roughly, m′ can obtain a reference to j through object creation (rule (dnew)),
flow (rules (dcall) and (dret)) or field read (x = this.f); object creation is
impossible because t created j, flow is impossible as well because then we would
have had α(i!j) ∈ Flows and therefore reentrant(α(i!j)) would have been true,
and field read is impossible, because then we would have had α(i ! j) ∈ Fields
and again, reentrant(α(i ! j)) would have been true.

4.2 Lock Analysis

The lock analysis computes a map L̂ from abstract call graph edges to locksets.
L̂ has the following property. Consider a pair of events with calls on object j:
e = (H, T , i.m ! j.n, t) and e′ = (H ′, T ′, i′.m′ ! j.n′, t′) such that t′ %= t. L̂(α(i.m !
j.n)) ∩ L̂(α(i′.m′ ! j.n′)) %= ∅ implies that j.n and j.n′ must be executed serially,
or in other words, that events e and e′ do not contribute an object race 〈j, n, n′〉.
Informally, a non-empty intersection of two locksets guarantees serializability of
the represented concrete events.

264 A. Milanova and W. Huang

Source and Target Locksets. The first part of the lock analysis associates
two sets, Slc (source lockset), and Tl c (target lockset) to every call site c. Source
lockset refers to the source tuple i.m, and target lockset refers to the target
tuple k.n in the call graph edge due to c. For example, call c in synch (this) {
...c: y.n(z)...} in method m, leads to this being in Slc. this refers to the receiver
of m; thus, for every edge i.m ! k.n due to c, the executing thread holds the lock
on i before descending into the execution of k.n.

All sets Slc and Tlc are initialized to ∅ and updated as follows. If c occurs in
a method m declared synchronized, then this is added to Slc. If the target at c is
declared synchronized, then this is added to Tlc. Additionally, we consider four
patterns of usage of synchronized blocks. We note, however, that even without
considering synchronized blocks, the lock analysis will be reasonably powerful,
because synchronization in Java is naturally object-based (i.e., it is achieved by
declaring methods as synchronized).

Self locking occurs when the lock variable is this. We add this to Slc when the
receiver variable y %= this; we add this to Tlc when the receiver variable is this.

synch (this) {...c: x = y.n(z)...} ∧ y %= this ⇒ Slc += this
synch (this) {...c: x = this.n(z)...} ⇒ Tlc += this

Global locking occurs when the lock variable lock is a static field, which is ini-
tialized exactly once during class initialization: static C lock = new C(); l .

synch (lock) {...c: x = y.n(z)...} ⇒ Tlc += l

Local-object locking occurs when the lock variable lock is an instance field, which
is initialized exactly once during object initialization: there is a field C lock; and
lock = new C(); l occurs in the constructor. We have:

synch (lock) {...c: x = y.n(z)...} ∧ y %= this ⇒ Slc += l

Client-side locking occurs when the lock variable y is the receiver at the call.

synch (y) {...c: x = y.n(z)...} ⇒ Tlc += this

When y is a local variable, the addition of this is safe because stack locations
in Java do not have aliases. When y is an instance field, however, the addition
of this is not necessarily safe. In bytecode synch (f) {...x = f.n(z)...} becomes
z = this.f; synch (z) {...w = this.f; w.n(...)...} and there could have been a write to
f between the two reads. We add this to Tlc only when our analysis proves that
it is safe (e.g., f is initialized once in the constructor and is readonly afterwards).

Fig. 5 illustrates the above patterns of usage of synchronized blocks.
Map L̂. The second part of the lock analysis computes L̂, a map from call
graph edges to locksets. The elements of a lockset are abstract objects plus
this. For example, suppose that L̂(i.m ! j.n) = {l, this} where l is a global lock.
The analysis guarantees that for every concrete edge i′.m ! j′.n represented by

Static Object Race Detection 265

class Account
AccountImpl acc = ...;
void update(int amt) {

synch (this) {
c: x = acc.get();

acc.put(amt+x);
}

}

(a) Self locking:
Slc = {this},Tl c = ∅

class Account
AccountImpl acc = ...

Object lock = ... l

void update(int amt) {
synch (lock) {

c: x = acc.get();
acc.put(amt+x);

}
}

(b) Local-object locking:
Slc = {l}, Tl c = ∅

class Account
AccountImpl acc = ...
void update(int amt) {

synch (acc) {
c: x = acc.get();

acc.put(amt+x);
}

}

(c) Client-side locking:
Slc = ∅,Tlc = {this}

Fig. 5. Patterns of usage of synchronized blocks

(acall)
c: x = y.n(z), y #= this, in method m ⇒

foreach k ∈ F̂ (y)
Ĥ(k) = C(...) n = dispatch(C, c)

P̂k.n += {(i.m, Slc,Tlc) | i ∈ F̂ (thism)}

(acallthis)
c: x = this.n(z) in method m ⇒

foreach k ∈ F̂ (y)
Ĥ(k) = C(...) n = dispatch(C, c)

P̂k.n += {(i.m′,Sl ∪ Slc,Tl ∪ Tlc) |
(i.m′,Sl , Tl) ∈ P̂k.m}

(acall) and (acallthis)
c: x = y.n(z) in method m ⇒

foreach k ∈ F̂ (y)
Ĥ(k) = C(...) n = dispatch(C, c)

foreach (i.m,Sl ,Tl) ∈ P̂k.n

lockset = Tl ∪ Tlc
if i ! k /∈ Flow ∨ i ! k ∈ B̂i

if this ∈ Sl ∪ Slc
lockset += i

lockset += (Sl ∪ Slc)\{this}
Ĉ += {i.m ! k.n | (i.m, Sl ,Tl) ∈ P̂k.n}
L̂′ = L̂[i.m ! k.n (→ S], where

S = L̂(i.m ! k.n) ∩ lockset

Fig. 6. Lock analysis. L̂(i.m ! j.n) are initialized to the maximal set of locks. The rules
are applied iteratively until they reach fixpoint.

i.m ! j.n, the thread executing the edge holds the lock of l and the lock of j′

before descending into the execution of j′.n.
The analysis (Fig. 6) extends P̂k.n to hold caller tuples i.m and the source

and target locksets associated with i.m. (acall) records Slc and Tlc with i.m.
(acallthis) propagates the locksets of caller tuples down the this-call chain.
For example, consider a method m which contains synch (lock) {... c: y.n ()...},
where lock is a global lock that points to l, and, in turn, n contains a call c′:
this.n′(). The analysis creates call graph edges i.m ! j.n′ where i is an abstract
receiver of m, and j′ is a receiver at call site c′. The lock analysis propagates
Slc = ∅ and Tl c = {l} to c′ with i.m; clearly, the call to j.n′ from i.m is protected
by the global lock.

The last rule (right column in Fig. 6) associates locksets to call graph edges.
When adding an edge to Ĉ, it also computes a lockset, lockset , for that edge.
The most interesting aspect of this rule is that Sl is propagated to lockset only if
i!k is not in Flows or it is in the boundary of i. This is necessary to ensure safety

266 A. Milanova and W. Huang

of the analysis. If i!k is in Flows and i ! k is not in the boundary of i, abstract
object i may refer to different concrete objects, say i′ and i′′, with concrete edges
i′ ! k and i′′ ! k both represented by the same abstract edge; thus, at runtime,
this would refer to i′ along edge i′!k, and to i′′ along edge i′′!k; if one thread
executes events along the first edge, and another thread executes events along
the second edge, k remains unprotected. Analogous reasoning applies when Sl
contains a local-object lock l. For example, consider Fig. 5(b). Let update be
called with abstract receivers i and j, and let k be the abstract AccountImpl
object. Assuming i ! k ∈ B̂i, we have L̂(i.update ! k.get) = {l}.

The lock analysis is safe but not complete. It exploits the fact that synchro-
nization in Java is naturally object-based (i.e., through this), and focuses on the
“specialness” this. The special handling of this is what sets our analysis apart
from other lock analyses such as [8] and [10] which aim at generality and appear
to treat this as a regular reference variable. Our analysis is able to handle the
vast majority of cases handled by the more complex analyses such as [8]. The
empirical results confirm this conjecture. Furthermore, our analysis is extensible,
as one can easily add new patterns of synchronized blocks.

4.3 Object Race Detection Analysis

The object race detection analysis is shown in Fig. 7. For ease of presentation,
we make the following simplifying assumptions. First, there is a single static
thread-fork site y.start, and it is located in main, second, the points-to set of y
contains a single abstract object t, and three, run contains no calls through this.
The analysis can be extended to handle arbitrarily many and arbitrarily located
thread-fork sites, arbitrary points-to sets of y, and run methods that contain
calls through this. Our implementation handles all cases.

The analysis computes a set of abstract races R. The following holds for R.

Theorem 4. For every object race 〈j, n, n′〉 in trace Tr, 〈α(j), n, n′〉 ∈ R.

Procedure AllRaces is the main driver. First, it identifies races on distributed
objects (line 1); second, it descends into the boundary of each i to identify
races on owned objects (lines 3-6). Procedure DistributedRaces maintains sets
St and St′ , which represent the accesses made by an arbitrary pair of threads
t and t′. Note that each access is recorded with its lockset. Lines 3-12 traverse
Ĉ starting at t.run (i.e, the single thread-fork site y.start). The interesting part
of this traversal is that j.n is added to St′ only if i!j is reentrant; if i!j is not
reentrant, then threads cannot race on j along this edge (recall Section 4.1).
In addition, DistributedRaces traverses Ĉ starting at root.main and discovers
accesses due to the main thread (lines 13-20). Finally, it computes and returns
the set of races on distributed objects (line 21-22).

Procedure Reach takes as input a tuple k.m′ and records all accesses j.n
reachable from k.m′ within the dominance boundary of k, B̂k. j.n is recorded
in S only if k is a minimal boundary of i!j (recall minimal boundaries form
Section 3.2). If k is not a minimal boundary, then there exists a smaller boundary,
say of k′. The analysis will first discover races on the “closer dominator” k′;

Static Object Race Detection 267

procedure DistributedRaces(Ĝ, Ĉ)
output R
[1] R = ∅, W = {t.run}
[2] St = ∅, St′ = ∅
[3] while W #= ∅
[4] remove i.m from W , mark i.m visited

[5] foreach i.m ! j.n ∈ Ĉ

[6] if root ∈ m̂inB i!j

[7] if reentrant (i ! j)

[8] St += (j.n, L̂(i.m ! j.n))

[9] St′ += (j.n, L̂(i.m ! j.n))
[10] else

[11] St += (j.n, L̂(i.m ! j.n))
[12] if j.n not visited then W += j.n

[13] W = {root.main}
[14] while W #= ∅
[15] remove i.m from W , mark i.m visited
[16] if i.m = t.run continue

[17] foreach i.m ! j.n ∈ Ĉ

[18] if root ∈ m̂inB i!j

[19] St′ = += (j.n, L̂(i.m ! j.n))
[20] if j.n not visited then W += j.n

[21] R += {〈j, n, n′〉 | (j.n, ls) ∈ St∧
(j.n′, ls′) ∈ St′∧
ls ∩ ls′ = ∅}

[22] return R

procedure Reach(k.m′, Ĝ, Ĉ)
output S
[1] S = ∅, W = {k.m′}
[2] while W #= ∅
[3] remove i.m from W , mark i.m visited

[4] foreach i.m ! j.m ∈ Ĉ s.t. i ! j ∈ B̂k

[5] if k ∈ m̂inB i!j

[6] S += (j.n, L̂(i.m ! j.n))
[7] if j.n not visited then W += j.n
[8] return S

procedure AllRaces(Ĝ, Ĉ)
output R

[1] R = DistributedRaces(Ĝ, Ĉ)
[2] while R changes
[3] foreach new race 〈i, m, m′〉 ∈ R

[4] St = Reach(i.m, Ĝ, Ĉ)

[5] St′ = Reach(i.m′, Ĝ, Ĉ)
[6] R += {〈j, n, n′〉 | (j.n, ls) ∈ St∧

(j.n′, ls′) ∈ St′∧
ls ∩ ls′ = ∅}

[7] return R

Fig. 7. Object race detection

eventual races with j.n will be discovered when the analysis descends into the
boundary of k′.

5 Implementation

The object and call graph analyses, dominance analysis, and object race detec-
tion analysis are implemented in Java using Soot 2.2.3 [13] and Spark [5]. We
performed whole-program analysis with the Sun JDK 1.4.1 libraries. All experi-
ments were done on a MacBook Pro laptop with a 2GHz Intel Core i7 processor
and 4GB of RAM. The implementation, which includes Soot and Spark, was run
with a max heap size of 1400MB; however, all benchmarks ran within a mem-
ory footprint of 800MB. Native methods are handled by utilizing the models
provided by Soot. Reflection is handled by manually specifying the dynamically
loaded classes. Our underlying points-to analysis analyzes constructors object-
sensitively in the style of [6]. As a result, the running times reported for points-to
analysis are approximately twice the running times of Spark.

268 A. Milanova and W. Huang

Table 1. Results

Program #Meth

ObjRace Chord Time[sec]
Distributed Owned

False Real
Race-free

Racy
Race-free

Racy Points-to Race
False Real False Real

tsp 3414 5 2 0 2 0 0 2 0 35 1
hedc 3749 8 2 14 1 0 3 2 2 40 6
sor 3403 4 2 0 0 0 0 0 0 35 1

SPECjbb 4640 19 0 19 69 0 8 30 16 50 4
weblech 4461 3 0 8 3 0 0 0 2 52 3

jdbm 4331 1 0 4 25 0 0 0 2 45 3
jdbf 3994 90 0 20 0 0 2 2 4 55 5

commons 3551 0 1 8 13 0 0 0 7 42 2
jtds 5044 64 0 87? 10 0 63? oom oom 61 86

Our suite consists of benchmarks used in previous work on concurrency
[15,9,14]. Column #Meth in Table 1 gives the size of the benchmarks in terms
of the number of methods (user and library) reachable by Spark. Benchmarks
tsp through weblech are whole-programs, and jdbm through jtds are libraries.
For the libraries, we converted the single-threaded harnesses from [9] to the
multithreaded model described in Section 4.3.

We compared our analysis with Chord [9], the leading static race detector.
Chord’s data race report includes a field-based view and an object-based view
of data races. The object-based view groups data races per abstract object (dis-
tinguished by allocation site as in our analysis) and for each abstract object, the
view provides a set of read/write access pairs. We counted each abstract object
reported in the object-based view as a racy object. We used reports available
at http://berkeley.intel-research.net/mnaik/research/pldi06 results.html for tsp and
hedc. We ran Chord 2.0 and generated reports for the rest of the benchmarks,
except for jtds, for which Chord ran out of memory with a max heap size 2GB.
Both Chord and our analysis suppress race reports due to constructors and
methods called within constructors.

Column ObjRace in Table 1 shows the number of non-thread-local (accord-
ing to the escape analysis from [11]) objects, reported as race-free or racy by our
analysis. Column Chord shows the number of racy objects reported by Chord.
Our analysis classifies objects as Distributed or Owned. An object j is classi-
fied as Distributed when the test at line 6 in DistributedRaces fires true; it is
classified as Owned otherwise. Note that, in general, an abstract object may be
classified as both Distributed and Owned. When race-free, a distributed object
is typically protected by its own lock (e.g., all methods called on that object
are declared synchronized). In general, although there are race-free distributed
objects, distributed objects tend to be racy. For owned objects (column Owned),
when race free, an owned object is most often protected by synchronization on
its owner. We observed many cases when synchronized methods access inter-
nal owned objects and the owned objects stay protected by their owner’s lock.
Although there are racy owned objects, owned objects tend to be race-free.

Static Object Race Detection 269

The authors examined the objects reported as racy by both our analysis and
Chord, and classified those object races as false-positive (columns False), and
feasible (columns Real). All feasible races reported by Chord were reported by
our analysis as well. Our analysis reports more feasible races than Chord. One
reason why feasible object races are not reported by Chord, is that although
there is an object race, there is no immediate data race on the object’s instance
fields. In the majority of cases, an object race leads to calls that change state on
internal unsynchronized library objects. The object races are symptoms not only
of potential data races deeper in the boundary of the object, but of higher-level
concurrency bugs such as atomicity errors and atomic serializability errors. We
believe that it is valuable to report all object races. Another reason why feasible
object races are not reported by Chord may be that Chord’s lock analysis is
unsafe [9], while our analysis is safe. There is a large number of racy objects
reported on jtds, and we were unable to confirm with certainty whether those
races were false or feasible; however, jtds is undersynchronized and it appears
that the majority of the reported races are feasible.

6 Related Work

Concurrency is a large and active area of research and we cannot include a
complete listing of related works. Below, we focus on the work closest to ours.

Von Pruan and Gross introduce the concept of the object race [15]. Their
object race detection is dynamic. In fact, a primary goal is to optimize dynamic
lockset- based race detection [12]; the higher-level concept of object race entails
fewer dynamic checks and therefore lower overhead. In later work, von Praun and
Gross introduce the concept of the Object Use Graph (OUG) [16] which allows
reasoning about the temporal relation of object accesses, and further reduces the
amount of dynamic checks in the lockset-based detector. Despite its name, the
OUG is unrelated to the object graph from ownership types [3] that we infer.
Our analysis reasons about object races as well. However, our analysis is entirely
static. Furthermore, although [15] and [16] make use of “ownership”, their notion
of ownership is very different from ours. They refer to thread ownership, not
dominance-based object ownership as we do. Similarly to [16], Choi et al. use
static analysis as well as dynamic happens-before analysis, to optimize a dynamic
lockset-based data race detector [2].

Chord [9] is the most advanced static race detector. Our work is similar in
its goal: we wanted to build an effective static object race detector for Java. It
is different from Chord in several ways. First, it focuses on object races while
Chord focuses on data races. Second, our analysis uses a different algorithmic
approach: it relies on dominance analysis at its heart, while Chord relies on
context-sensitive points-to analysis. Dominance analysis entails a cheaper object
abstraction — objects are represented by allocation site — which may lead to
better scalability of our analysis. Our experiments indicate that our analysis is
effective and that it complements Chord.

Work by Vaziri et al. [14] is most closely related to ours. It explores a type
system for data-centric synchronization, and as in our work, dominance-based

270 A. Milanova and W. Huang

ownership plays an important role. An object is viewed as an atomic set of
fields, and the lock of that object protects its fields as well as internal (owned)
objects. Work by Boyapati et al. [1] explores dominance-based ownership for safe
multithreaded programming as well. In [14] and [1] ownership is specified by the
programmer and checked by the type system. In contrast, we infer ownership
and object races automatically.

7 Conclusions

We have presented a novel static object race detection analysis. We have shown
its effectiveness by implementing a prototype, applying it to several large multi-
threaded Java benchmarks and comparing its results to the results of the leading
static race detector Chord.

References

1. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: prevent-
ing data races and deadlocks. In: Conference on Object-Oriented Programming
Systems, Languages, and Applications, pp. 211–230 (2002)

2. Choi, J., Lee, K., Loginov, A., O’Callahan, R., Sarkar, V., Sridharan, M.: Effi-
cient and precise datarace detection for multithreaded object-oriented programs.
In: Conference on Programming Language Design and Implementation, pp. 252–
269 (2002)

3. Clarke, D., Potter, J., Noble, J.: Ownership types for flexible alias protection. In:
Conference on Object-Oriented Programming Systems, Languages, and Applica-
tions, pp. 48–64 (1998)

4. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixed points. In: Sympo-
sium on Principles of Programming Languages, pp. 238–252 (1977)

5. Lhoták, O., Hendren, L.: Scaling Java Points-to Analysis Using SPARK. In: Hedin,
G. (ed.) CC 2003. LNCS, vol. 2622, pp. 153–169. Springer, Heidelberg (2003)

6. Milanova, A.: Light context-sensitive points-to analysis for java. In: Workshop on
Program Analysis for Software Tools and Engineering, pp. 25–30 (2007)

7. Milanova, A., Vitek, J.: Static Dominance Inference. In: Bishop, J., Vallecillo, A.
(eds.) TOOLS 2011. LNCS, vol. 6705, pp. 211–227. Springer, Heidelberg (2011)

8. Naik, M., Aiken, A.: Conditional must not aliasing for static race detection. In:
Symposium on Principles of Programming Languages, pp. 327–338 (2007)

9. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for Java. In: Confer-
ence on Programming Language Design and Implementation, pp. 308–319 (2006)

10. Pratikakis, P., Foster, J., Hicks, M.: LOCKSMITH: context-sensitive correlation
analysis for race detection. In: Conference on Programming Language Design and
Implementation, pp. 320–331 (2006)

11. Rountev, A., Milanova, A., Ryder, B.G.: Points-to analysis for Java using annotated
constraints. In: Conference on Object-Oriented Programming Systems, Languages,
and Applications, pp. 43–55 (October 2001)

12. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: A dy-
namic data race detector for multithreaded programs. In: Symposium on Operating
Systems Principles, pp. 27–37 (1997)

Static Object Race Detection 271

13. Vallée-Rai, R., Gagnon, E.M., Hendren, L., Lam, P., Pominville, P., Sundare-
san, V.: Optimizing Java Bytecode Using the Soot Framework: Is It Feasible? In:
Watt, D.A. (ed.) CC 2000. LNCS, vol. 1781, pp. 18–34. Springer, Heidelberg (2000)

14. Vaziri, M., Tip, F., Dolby, J., Hammer, C., Vitek, J.: A Type System for Data-
Centric Synchronization. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 304–328. Springer, Heidelberg (2010)

15. von Praun, C., Gross, T.: Object race detection. In: Conference on Object-Oriented
Programming Systems, Languages, and Applications, pp. 70–82 (2001)

16. von Praun, C., Gross, T.: Static conflict analysis for multithreaded object-oriented
programs. In: Conference on Programming Language Design and Implementation,
pp. 115–128 (2003)

	Static Object Race Detection
	Introduction
	Formal Account of Object Graphs
	Concrete Semantics
	Abstract Semantics

	Dominance Inference Analysis
	Dominance Boundary
	Minimal Boundaries

	Object Race Detection
	Reentrancy Analysis
	Lock Analysis
	Object Race Detection Analysis

	Implementation
	Related Work
	Conclusions

